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„IOSEPH PEANO

 ARITHMETICES PRINCIPIA NOVA METHODO EXPOSITA” 

în puține cuvinte și ceva mai „constructivist privită”

Această operă, al cărui titlu probabil amintește de „Philosophiæ Naturalis Principia Mathe-
matica”1 domnului Isaac Newton - cel puțin în propria mea perspectivă - reprezintă un punct de in -
flexiune în re-formalizarea „conceptelor matematiciste2”, oferind totodată o fundație solidă bazată 
pe un sistem axiomatic strict logic formalizat, în  aceeași manieră în care principiile newtoniene au  
fundamentat – cu ceva timp în urmă - formalismele „fiziciste” ori acelea „fizicaliste”3.

1 Propusă de către domnul  Isaac Newton, aprobată pentru publicare de către domnul Samuel Pepys – președinte  
al „Societății Regale” în 5 iulie 1686 și tipărită la Londra de către Joseph Streater, cu sprijinul abia menționatei 
„Societății Regale” în anul 1687.

2 În principiu ori cel puțin în ancadramentele discursive familiare probabil doar mie însămi, termenul „matemati-
cist” – ar putea reprezenta orice concept, care s-ar referi la ceea ce:

Domnul Aristotel clama: „Știința cantității”.
Domnul Isidore Auguste Marie François Xavier Comte sugera că ar reprezenta: „Science des grandeurs” - „Ști -

ința măsurării indirecte”, în accepțiuni contemporane
Domnul Benjamin Peirce: „Mathematics is the science that draws necessary conclusions” - Matematica este  

știința care trage concluziile necesare.
Domnul Bertrand Arthur William Russell: ... „all Mathematics is Symbolic Logic” -Toată matematica este logi-

că simbolică.
Domnul Luitzen Egbertus Jan Brouwer: „The only possible foundation of mathematics must be sought in this 

construction under the obligation carefully to watch which constructions intuition allows and which not” - Singura 
fundație posibilă a matematicii trebuie căutată în această construcție, sub obligația de a observa cu atenție care con-
strucții - intuitiv - sunt permise și care nu. 

Domnul Arend Heyting ... „intuitionist mathematics is nothing more nor less than an investigation of the ut -
most limits which the intellect can attain in its self-unfolding - matematica intuiționistă nu este nici mai mult nici  
mai puțin decât o investigație a limitei limitelor e pe care intelectul le poate atinge în auto-dezvoltarea sa. 

Ori pur și simplu – revenind la perspectiva domnului Russell: „The subject in which we never know what we 
are talking about, nor whether what we are saying is true.” - Disciplina în care nu știm niciodată despre ce vorbim și 
nici dacă ceea ce spunem este adevărat.

Cel puțin conform celor sugerate în:
„A History of Mathematics”, lucrarea domnului Florian Cajori a cincia ediție din 1991, publicată de către  

„American Mathematical Society” – printre paginile 285 și 286
Primul volum al „Cours de philosophie positive, Troisième Leçon” – lucrarea domnului Isidore Auguste Marie 

François Xavier Comte, publicată la Paris, la „Rouen Frères”, în 1830.
„Linear associative algebra” lucrarea domnilor Benjamin Peirce și Charles Sanders Peirce publicată la New 

York, la „D. Van Mostrand”, în 1882 – la pagina 7
„The Principles of Mathematics”, lucrarea domnului Bertrand Russell, publicată în 1903 la „Cambridge at the 

University Press” – la pagina 5.
„Recent Work on the Principles of Mathematics” articolul domnului Bertrand Russell, publicat în „Internatio-

nal Monthly”, volumul 4 din 1901.
„The Development of Intuitionistic Logic” articolul domnului Mark van Atten, publicat în 8 noiembrie 2017 în  

„The Stanford Encyclopedia of Philosophy” ediția din iarna anului 2017, editată de către domnul Edward N. Zalta,  
și publicată de către „Metaphysics Research Lab, Stanford University. Retrieved”.

3 Tot „în principiu” și - tot - „cel puțin în ancadramentele discursive familiare probabil doar mie însămi”, termenii:

a. „Fizicist” reprezintă un soi de abstractizare a accepțiilor „fizicește” calificabile.
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Așa încât – cel puțin în acest context discursiv – s-ar putea accepta că, tocmai prin această 
lucrare, domnul Giuseppe Peano a re-construit fundamentele matematicii printr-o abordare – deși,  
probabil neintenționat - constructivistă, centrată pe axiome și demonstrații explicit recursive, mai 
degrabă decât pe intuiții ori revelații analogic fundamentate.

Doar că, pentru a aprecia pe deplin perspectiva domniei sale - probabil - în prealabil, ar tre-
bui apreciate atât contextul intelectual al sfârșitul de secol XIX, cât și evoluția conceptului de număr 
- de la practicile empirice ale antichității la acceptarea lui „zero” ori a „infinitului”, culminând cu  
formalizarea riguroasă a tuturor acestora, alături de operațiile în care ar putea fi implicate. 

Așa încât – revenind:

Sfârșitul secolului al XIX-lea a fost marcat de o căutare intensă a rigorii în fundamentele 
matematicii, pe fondul progreselor în aritmetică, algebră, analiză și geometrie, care au evidențiat ne-
voia de a reconstrui concepte fundamentale precum numerele naturale pe baze mai solide decât cele 
intuitive, empirice ori „revelate".

Iar, prin lucrările domnilor Gottfried Wilhelm Leibniz, în care domnia sa și-a propus propria 
perspectivă asupra unui limbaj universal4, George Boole care a „logicizat algebra” ori a „algebrizat 

„Fizicismul” reprezintă generica calitate a unui sistem filosofic conceptual, pe care - spre exemplu - domnul  
Karl Raimund Popper l-a definit, prin analizarea spectrului intensional al „unei afirmații despre o proprietate fizi -
că”, care, poate fi - cel puțin teoretic - „contrazisă” printr-o „observație”. 

În timp ce – în ciuda faptului că, cel puțin aparent reprezintă aceleași soiuri de paradigme acceptive și tot un  
soi de concept filosofic, 

b. „Fizicalismul” nu prezintă decât un soi de izomorfism expresiv cu „fizicismul”.

De fapt „fizicalismul” reprezintă perspectiva prin care s-ar presupune că nu există nimic - real - în afara „celor  
fizic definibile”.

Ori perspectiva conform căreia tot ceea ce chiar în acest moment există - inclusiv mințile umane - a apărut în  
virtutea re-aranjamentelor și a interacțiunilor dintre particulele și forțele fizice care au apărut după nașterea Univer-
sului.

Cel puțin conform celor sugerate în:
Articolul „physicism” găzduit pe platforma:

 „https://www.merriam-webster.com, la adresa: „https://www.merriam-webster.com/dictionary/physicism”, de-
sigur de către: „Merriam-Webster Dictionary.

Respectiv  aceluia  -  omonim  -  găzduit  de:  „Collins  Online  Dictionary”,  la  adresa: 
„https://www.collinsdictionary.com/dictionary/english/physicism”  -  desigur  -  pe  platforma 
„https://www.collinsdictionary.com”

„Philosophy of Mind: A Very Short Introduction - Very Short Introductions” - lucrarea doamnei Barbara Gail 
Montero, publicată la „Oxford University Press” în 2022.

„Defining "Physicalism"” - articolul domnului Robert M. Francescotti, publicat în „The Journal of Mind and  
Behavior”, volumul 19, numărul 1 din iarna anului 1998, printre paginile 51 și 64.

Articolul domnului Andreas Elpidorou - „Introduction: The Character of Physicalism” - publicat în „Topoi”,  
volumul 37, printre paginile 435 și 455, din 2018.

Dar, asupra acestor detalii – cel puțin în acest context - nu voi reveni.
4 De fapt, domnul Leibniz a propus conceptul unui limbaj formal simbolic menit să exprime adevăruri matemati-

ce și logice într-un mod universal, precis și deductiv - „characteristica universalis”. 
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logica”5 - și ale lui Gottlob Frege, care a propus fundamentarea matematicii pe sistem logic biva-
lent, s-au promovat un soi abordări simbolice și formale a matematicilor. 

În timp ce - desigur - prin contribuțiile contribuțiile domnilor lor, domnii Georg Cantor prin 
maniera în care a formalizat „teoria mulțimilor” și Richard Dedekind prin felul în care a definit nu-
merelor reale au sugerat necesitatea eliminării tuturor „ambiguităților formalismelor  matematicist  
descrise”.

Oricum – re-revenind - în societățile preistorice și antice, numărarea era o practică cât se 
poate de „practică”, motivată de nevoi concrete, precum gestionarea resurselor ori împărțirea timpu-
lui. 

Spre exemplu, „Osul Ishango din Congo”6 prezintă crestături grupate, sugerând o formă tim-
purie de numărare. 

În Mesopotamia în mileniul III înainte de Isus Hristos, babilonienii foloseau un sistem sexa-
gesimal7 pentru calcule curente, reprezentând numerele naturale prin simboluri cuneiforme repetiti-
ve. 

Așa încât, în lucrarea domniei sale „De Arte Combinatoria”, în 1666 a sugerat posibilitatea creării unui sistem 
simbolic care să permită combinarea conceptelor prin reguli logice, anticipând astfel formalismul modern „matema-
ticist-contemporan”.

5 În matematică și în logica matematică, „algebra booleană” reprezintă o ramură a algebrei care  diferă de alge-
bra „consacrată”, în primul rând prin faptul că, valorile variabilelor sunt valorile de adevăr - adevărat și fals , de 
obicei notate cu 1 și 0 - în timp ce în algebra elementară valorile variabilelor sunt numere, iar în al doilea rând, al -
gebra booleană folosește operatori logici precum conjuncția ( Și ), notată cu ∧ , disjuncția ( SAU ), notată cu ∨ , 
și negația ( NU ), notată cu ¬ . Algebra „clasică”, pe de altă parte, folosește operatori aritmetici precum adunarea,  
înmulțirea, scăderea și împărțirea. 

Prin urmare, algebra booleană este o modalitate formală de a descrie operațiile logice în același mod în care al-
gebra elementară descrie operațiile numerice.

Oricum – revenind - „Algebra booleană” a fost propusă de către domnul George Boole în lucrarea domniei sale 
„The Mathematical Analysis of Logic” – publicată în 1847 în Anglia. la Cambridge de către editura „Macmillan, 
Barclay, and Macmillan” și ulterior detaliată în „An Investigation of the Laws of Thought” în 1854 publicata la 
Londra, de „Walton and Maberly” și co-publicată la Cambridge de „Macmillan & Co”.

6 Cu o vechime de 20.000 de ani, a fost supranumit „cel mai vechi instrument matematic al omenirii”, cel puțin  
conform celor sugerate de către domnul Dirk Huylebrouck, în lucrarea domniei sale „Africa and Mathematics -  
From Colonial Findings Back to the Ishango Rods” – publicată în 2019 la „Springer Nature Switzerland AG” - în 
capitolul „Missing Link”, printre paginile 153 și 166.

Deși – de fapt - istoria uneltelor gravate e mult mai lungă, spre exemplu, „Osul de lup” din Cehia are 26.000 de 
ani, iar osul „Lebombo” din Africa de Sud depășește 40.000 de ani. 

Dar, în acest context nu voi insista asupra acestui detaliu.
7 „În baza 60” adică, precum acela încă folosit - într-o formă modificată - pentru măsurarea timpului unghiuri lor 

și coordonatelor geografice .
Iar, cifrele cuneiforme foloseau zece ca sub-bază, în stilul unei notații „semn-valoare”, în care o cifră sexagesi -

mală era compusă dintr-un grup de semne „înguste”, reprezentând unități de până la nouă și un grup de semne  
„late”, reprezentând până la cinci zeci. Iar, valoarea cifrei era reprezentată – pur și simplu – „aditiv”, adică de suma  
valorilor părților sale componente.

Unde, o abia menționată „notație semn-valoare” reprezintă numerele folosind o secvență de numerale, fiecare 
reprezentând o cantitate distinctă, indiferent de „poziția lor în secvența în care sunt reprezentate”. 

Așa încât – deși desigur, convențiile ar fi putut fi diferite - poziția unui semn nu influența valoarea unui număr  
astfel reprezentat.
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Egiptenii cu circa 2000 înainte de Isus Hristos utilizau deja un soi de sistem decimal, în care  
fiecare simbol era repetat de câte ori era necesar8, dar fără zero - conceptul de „nimic” ne-reprezin-
tând altceva decât „nimic”. 

Zero nu era recunoscut ca număr9.
Deși, tot babilonienii promovau deja un „simbol pentru absență”, ca pe un soi de precursor 

al lui 0 – de fapt foloseau un „marcaj” cu un „simbol” pentru „absența a ceva”. Doar că, nu putea fi  
folosit în calcule, întrucât nu concepeau „operații cu «nimic»”. 

Și mai mult chiar era folosit doar ca simbol „median”, adică în mijlocul unei succesiuni de  
cifre diferite prin care trebuia să se reprezinte un număr. Precum spre exemplu, pentru a diferenția  
numere precum 201 și 21. Iar, în măsura în care existența sa putea fi dedusă din context, era pur și  
simplu, ignorat.

Apoi, în antichitatea greacă, pitagoreenii au atribuit numerelor naturale semnificații mistice, 
asociindu-le cu forme geometrice10. Numărarea era înțeleasă ca o succesiune implicit acceptată de 
elemente identice, iar infinitul era tratat precum ar reprezenta o „ciudățenie”, un concept care ar  
conduce la paradoxuri și contradicții - așa precum de altfel au și demonstrat prin „paradoxurile lui  
Zenon11”.

8 Cu alte cuvinte „nepozițional” precum este actualmente cel tot – decimal – contemporan. 
Deci – pur și simplu - aveau simboluri diferite pentru 1,10,100,1.000,10.000,100.000, „1 milion, sau multe” pe  

care le repetau succesiv, de câte ori era necesar.
9 Deși, cel puțin aparent, simbolul „nefer” simbolizând în principiu „bun”, „complet”, „frumos” mai era aparent  

folosit și în încă două posibile interpretări, întrucât într-un papirus în care se enumerau „cheltuielile de judecată”,  
datat cu aproximativ  1740 înainte de Hristos, acesta indica un „sold zero”.

Iar, atât într-un desen de pe „piramida din Meidum” cât și deopotrivă în alte situri de acest soi, tot „nefer” era  
folosit pentru a indica nivelul solului, înălțimea și adâncimile fiind măsurate „deasupra neferului” sau în măsura în 
care era cazul, „sub nefer”, în timp ce, conform celor sugerate de către domnul Carl Boyer, un act descoperit la  
Edfu conținea un concept privitor la ceea ce ar putea reprezenta zero, pentru a descrie geometric o anumită valoare  
a unei magnitudini. 

Desigur, ambele perspective fiind cel puțin conforme cu cele sugerate de către domnul George Gheverghese 
Joseph, în lucrarea domniei sale „The Crest of the Peacock: Non-European Roots of Mathematics” publicată la 
Princeton University Press în 2011.

10 De fapt, domnul Pitagora – cel puțin aparent – promoa perspectiva prin care s-ar putea accepta faptul că, nume-
rele în sine explicau adevărata natură a Universului. 

În cultura greacă, în vremea lui Pitagora, numerele erau exclusiv „naturale” - adică numere întregi pozitive și  
lipsite de orice accept pentru vreun soi „zero”. Dar, spre deosebire de contemporanii lor, filosofii pitagoreici repre -
zentau numerele grafic, nu simbolic ori pur și simplu prin litere. 

Așa încât, foloseau puncte, cunoscute și sub numele de „psiphi” - pietricele), pentru a reprezenta numerele în  
triunghiuri, pătrate, dreptunghiuri și pentagoane, ceea ce – cumva - le permitea o înțelegere vizuală a matematicii și  
permitea o explorare geometrică a relațiilor numerice.

11 „Paradoxurile lui Zenon” - din Elea, din secolul V de dinainte de Isus Hrhristos, discipol al lui Parmenide -  
sunt printre altele consacrate tocmai pentru modul în care pun sub semnul întrebării, atât posibilitatea existenței  
„mișcării”, „pluralității” cât și a „divizării întregilor în părți infinit de mici”.

Așa încât:

1. „Ahile și broasca țestoasă”: 
Ahile, un alergător – rapid - se întrece cu o broască țestoasă - lentă. Pentru a-i oferi o șansă, Ahile îi dă țestoase  

un avans. Iar, domnul Zenon sugerează că Ahile nu va ajunge niciodată din urmă broasca țestoasă, întrucât acesta 
trebuie mai întâi să ajungă în punctul în care a plecat broasca țestoasă. Doar că, în acest timp, broasca țestoasă a  
parcurs deja o distanță mai mică. Pentru a acoperi această nouă distanță, Ahile trebuie să ajungă în noul punct, dar  
în acest timp broasca țestoasă a parcurs o altă distanță, chiar mai mică. 
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Și toate acestea în timp ce, în India, conceptul de „shunya” – vid - a apărut în texte vedice ca  
o posibilă perspectivă filosofic definibilă și domnul Aryabhata – cam cu 500 de ani după Isus Hris-
tos - a promovat un sistem de numărare proto-„pozitional”, în care cifra zero ... încă nu avea un sta -
tut bine determinat12. 

Deși,  într-un manuscris antic,  scris  pe scoarță de mesteacăn, descoperit  în 1881 în satul 
Bakhshali, se poate remarca folosirea unui sistem de numere cu valori pozițional indicate, în care un 
punct desemna „zeroul”. Iar, acel punctul era numit shunya-sthāna „loc gol”. Cu toate că, tot același 
„simbol” era folosit și în expresiile algebrice pentru o variabilă necunoscută, cam cum s-ar folosi 
„x”-ul în algebra contemporană13.

Iar, „0” va apare ceva mai târziu, la aproximativ 628 de ani după Isus Hristos, când domnul 
Brahmagupta îl promovează în „Brāhmasphuṭasiddhānta”14 ca număr  cu proprietăți aritmetice:

Și cum acest proces se repetă la infinit, împărțind distanța în segmente din ce în ce mai mici, domnul Zenon 
concluzionează că, de vreme ce există un număr infinit de puncte de parcurs, Ahile nu va ajunge niciodată din urmă  
broasca țestoasă.

2. „Dihotomia”:
Pentru a se ajunge la o destinație, trebuie mai întâi să se parcurgă jumătate din distanță, apoi trebuie să se par -

curgă jumătate din distanța rămasă și tot așa mai departe, până la infinit.
Așa încât, oricât de mică ar fi distanța, întotdeauna poate fi împărțită în două părți – eventual egale. Iar, 

pentru a putea fi parcursă, trebuie să parcurgă un număr infinit de „parți”, ceea ce ar fi imposibil într-un interval de  
timp - finit. Și astfel, „mișcarea” este o iluzie.

3. „Săgeata”
Orice săgeată aflată în zbor este, în orice moment dat, într-o stare „statică”.
Așa încât, domnul Zenon a sugerat că timpul este compus dintr-o serie de momente discrete, „înghețate” – ori 

cualte cuvinte, dintr-o succesiune de „staze”. 
Și cum într-un anumit moment, o săgeată aflată în zbor ocupă un spațiu egal cu ea însăși, s-ar putea acceta fap -

tul că, de fapt „stă”. Iar, cum acest fapt este valabil pentru fiecare moment din zborul acesteia, „săgeata trebuie să 
stea pe toată durata evoluției sale”.

Doar că, de fapt, seria infinită de „jumătăți” de distanță – precum ar fi: „1/2+1/4+1/8+ ... și așa mai departe” - 
este o serie convergentă, a cărei sumă este egală cu 1. Întrucât - ceea ce probabil doar în proprie-mi perspectivă ar fi 
putut și domnul Zenon să-și fi imaginat - dacă un pătrat este pur și simplu tăiat succesiv în 2 jumătăți, iar apoi una  
dintre acestea este tăiată în alte 2 jumătăți, iar apoi una dintre acestea este tăiată în alte 2 jumătăți, chiar dacă s-ar  
împărții acel pătrat în „infinit de multe jumătăți”, acestea dacă ar fi reunite tot un pătrat ar forma. 

Și  mai  mult  chiar,  orice  formă  geometrică  indiferent  în  câte  părți  ar  fi  împărțită,  tot  aceeași  formă  va  
reprezenta, prin re-unirea acestora.

Și astfel, „orice sumă infinită de termeni care ar putea reprezenta chiar și o valoare infinit de mică” poate avea  
o „valoare finită”, ceea ce conduce la infirmarea tuturor celor astfel sugerate de către domnul Zenon.

Dar, asupra altor detalii asociate acestor soiuri de paradigme acceptive, în acest context, nu voi insista.
12 În 499 domnul, Aryabhata a conceput un sistem de numere poziționale, folosind consoane sanscrite pentru nu -

mere mici și vocale pentru puterile lui 10. 
Așa încât, folosind acest sistem, numerele de până la un miliard puteau fi exprimate folosind fraze scurte, dar 

care, întrucât producea fraze destul de ... impronunțabile, a fost abandonat, deși aparent principiul sistemului de nu-
mere poziționale i-a inspirat pe post-cursorii domniei sale.

13 Cel puțin conform celor sugerate în „Number Words and Number Symbols: A Cultural History of Numbers” de  
către domnul Karl Augustus Broneer – în lucrarea domniei sale, publicată la M.I.T. Press, în 1969.

14 Una dintre lucrările domniei sale în care, printre altele, instituie reguli pentru manipularea numerelor negative  
și pozitive, alături de o metodă de calculare a rădăcinilor pătrate și mai multe metode de rezolvare a ecuațiilor linia -
re ori pătratice plus câteva reguli pentru însumarea seriilor alături de „identități” și câteva „teoreme”. 

5

https://esteticademersurilorinutile.com/
https://esteticademersurilorinutile.com/


                                    esteticademersurilorinutile.gmail.com
                                    esteticademersurilorinutile.com   

Spre exemplu – în acest abia menționat context discursiv – domnia sa menționează că suma 
unui număr pozitiv și a unui număr negativ este diferența lor iar, dacă sunt egale, zero și totodată că, 
scăderea unui număr negativ este echivalentă cu adunarea unui număr pozitiv ori că, că produsul a 
două numere negative este pozitiv. 

Doar că, unele dintre propunerile privitoare la fracții diferă de acelea agreate prin sistemati-
zarea modernă al numerelor raționale . 

Spre exemplu, prin reglementările propuse de către domnia sa, s-ar putea accepta, că:

Un număr pozitiv sau negativ, împărțit la zero, este o fracție cu zero ca numitor. 
Zero împărțit la un număr negativ sau pozitiv este fie zero, fie este exprimat ca o fracție cu 

zero ca numărător și cantitatea finită ca numitor. 
Zero împărțit la zero este zero.15

Totuși, în secolul al XII-lea, domnul Bhāskara al II-lea, în Līlāvatī – tratatul domniei  sale 
despre matematică a sugerat - că, împărțirea la zero ar trebui să aibă ca rezultat o cantitate infinită.

O cantitate împărțită la zero devine o fracție al cărei numitor este zero. 
Această fracție se numește cantitate infinită. 
În această cantitate constând din ceea ce are zero ca divizor, nu există nicio modificare, deși 

multe pot fi adăugate sau extrase; așa cum nicio schimbare nu are loc în Dumnezeul infinit și imua-
bil atunci când lumi sunt create sau distruse, deși numeroase ordine de ființe sunt absorbite sau 
scoase la iveală16.

Oricum – revenind - aceste idei au fost preluate în cultura arabă prin matematicieni precum 
domnul Al-Khwarizmi – la aproximativ 825 de anii după Isus Hristos17 -  care a adoptat „sifr”18 - 
zero - din sistemul de numerație indian. 

Precum – spre exemplu - „Identitatea lui Brahmagupta”, prin care, domnia sa sugera că, spune că, dat fiind n, 
produsul a două numere de forma a2+nb2 este el însuși un număr de acea formă, adică: 

(a2+nb2)(c2+nd2)=(ac−nbd)2+n(ad+bc)2 

Respectiv „Teorema lui Brahmagupta’, prin care se afirmă că, dacă un patrulater înscris într-un cerc are diago-
nale perpendiculare, atunci perpendiculara pe o latură din punctul de intersecție al diagonalelor întotdeauna va îm -
părți în exact două parți egale, latura opusă.

Dar, asupra acestor detalii, nu voi insista.
15 Conform, cel puțin celor sugerate în „The Nothing that Is: A Natural History of Zero” , lucrarea domnului 

Robert Kaplan, publicată la Oxford University Press, în 1999 – printre paginile 68 și 75.
16 Confirm cel puțin celor sugerate de către domnul Rahul Roy, în articolul domniei sale „Babylonian Pythagoras’ 

theorem, the early history of zero and a polemic on the study of the history of science”. Publicat în „Reson” în 
volumul 8, printre paginile 30 și 40, în 2003.

17 Cel puțin conform celor sugerate în „Al-Khwarizmi: the inventor of algebra”, lucrarea domnului Corona Brezi -
na, publicata la „New York - Rosen Pub. Group” în 2006.

18 În perioada pre-islamică, cuvântul „ṣifr” - arabă صفر - avea sensul de „gol”. Dar, a evoluat pentru a însemna 
zero, atunci când a fost folosit pentru a traduce ceea ce în sanscrită reprezenta „vid” śūnya  -  शून्य .

Cel puțin conform celor sugerate în „Annual Report of the Board of Regents of the Smithsonian Institution: 
Showing the Operations, Expenditures, and Condition of the Institution”, publicat de „Smithsonian Institution -  
U.S. Government Printing Office”, în 1903, la pagina 518.
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Iar, în Europa19, domnul Fibonacci la 1202 ani după Isus Hristos a promovat zero și sistemul 
decimal prin „Liber Abaci”20, doar că, numerele naturale rămâneau definite intuitiv, ca numere „nu-
mărabile”: 1, 2, 3 și așa mai departe. 

Și mai mult chiar, în ceea ce privește „infinitul”, acesta a fost descris cu precădere în contex-
te „teologiste” - spre exemplu, domnul Al-Ghazali îl promova ca pe un soi de „potențial divin” – în 
timp ce, în acelea „matematiciste” a rămas doar vag descris.

Pentru ca, începând din secolele XVI-XVIII, matematicienii - precum domnii Descartes și  
Newton  -  să  integreze  numerele  naturale  atât  în  algebră  cât  și  în  calcule  infinitezimale,  deși  
definițiile lor rămâneau – încă - „intuitive”. 

Și deși - între timp - existența lui „0” fusese pe deplin acceptată, acesta nu era încă conside -
rat: „număr natural cu drepturi depline”. Iar „infinitul” apărea în descrierea unor „serii” și a unor 
„limite”, dar fără a beneficia de o teorie formală, care să-i sustenteze existența ori proprietățile. 

Iar – în cele din urmă - în secolul XIX, în 1861, domnul Hermann Grassmann - în lucrarea 
domniei sale „Lehrbuch der Arithmetik für höhere Lehranstalten21”, în 1861 - a propus o definiție 
recursivă a numerelor, generate prin adăugare succesivă de „unități”, domnul Richard Dedekind - în 
1888 în lucrarea domniei sale „Was sind und was sollen die Zahlen?”22- le-a definit ca și cum ar al-
cătui un sistem ordonat, prin care, pornindu-se de la „1” și aplicându-se un „succesor”, inductiv s-ar  
putea ajunge până la „infinit”, iar domnul Gottlob Frege le-a abordat logic, definind N ca clasa mul-
țimilor cu n elemente. Doar că, această definiție era complexă și depindea de o „teorie mulțimilor”. 

Apoi, domnul Georg Cantor a revoluționat toate acestea propunând o „teorie a mulțimilor” 
în care erau acceptate cardinalități infinit de mari – cel puțin - pentru „mulțimile numerelor” de ori-
ce soi23.

Deci - în acest ancadrament acceptiv - domnul Giuseppe Peano a propus în 1889 „Arithmeti-
ces Principia Nova Methodo Exposita” – cu alte cuvinte, „Principiile aritmeticii 

19 Cel puțin conform celor sugerate în „The Universal History of Numbers: From Prehistory to the Invention of 
the Computer”, lucrarea domnului Georges Ifrah, publicată la „John Wiley & Sons Inc” în 2000.

20 Din latină „Cartea Calculului”, reprezintă o lucrare despre matematică - scrisă în latină, desigur – de către 
domnul Leonardo de Pisa, cunoscut postum drept „Fibonacci”.

21 Publicată inițial la Berlin, la „Verlag von T. C. F. Enslin - Adolph Enslin)”
22 Publicată inițial la Braunschweig, în Germania la „Friedrich Vieweg und Sohn”.
23 De fapt, domnul Georg Cantor a revoluționat – probabil - toată matematica prin dezvoltarea teoriei mulțimilor,  

în special prin lucrarea domniei sale „Grundlagen einer allgemeinen Mannigfaltigkeitslehre”  - publicată în 1883 la  
Leipzig, de „B.G. Teubner” - în care a propus conceptul de cardinalitate – de număr al elementelor - pentru mulțimi  
infinite și demonstrând că există diferite tipuri de infinit. Spre exemplu, cardinalitatea mulțimii numerelor naturale  
– deși infinită - fiind strict mai mică decât cardinalitatea numerelor reale – „infinit mai mare” decât aceea a numere-
lor naturale. 
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prezentate într-o nouă metodă” - astfel propunând pentru aritmetică ceea ce cu mult timp mai înain-
te, domnul Euclid prin „Elementele”24 domniei sale oferise geometriei: un sistem axiomatic concis, 
capabil să susțină întreaga construcție a numerelor naturale.

Și oricum, importanța lucrării domniei sale nu o constituie doar propriile-i axiome prin care 
fondează mulțimea abia menționatelor numere ori definirea funcției „succesor” și unicitatea rezulta-
tului acesteia sau faptul că 1 – deși în unele sisteme moderne se începe de la 0 - nu este succesorul 
nici unui număr ci – nicidecum în cele din urmă - „principiul inducției”. 

Iar, elementul de noutate care o definește nu rezidă doar în conținut, ci tocmai în forma aces-
teia, sustentată de un simbolism logic sistematic, articulat într-o limbă latina deliberat de-„persona-

24 „Elementele - în original: Στοιχεῖα, Stoicheia - lui Euclid” reprezintă una dintre cele mai influente și cele mai 
importante cărți din istoria matematicii și a științei, un tratat matematic compus din 13 cărți, propus desigur, de că-
tre domnul Euclid din Alexandria, cu aproximativ 300 de ani înainte de Isus Hristos.

Iar, opera domniei sale a servit drept principalul manual de geometrie și logică pentru mai bine de 2000 de ani,  
a fost una dintre cele mai vechi lucrări matematice tipărite după inventarea tiparului. 

Și s-a estimat a fi a fost a doua după Biblie, în ceea ce privește numărul de ediții publicate de la prima tipărire  
din 1482 – cel puțin așa precum au sugerat doamna Uta B. Merzbach și domnul Carl B. Boyer, în capitolul „5: Eu-
clid of Alexandria”, în lucrarea domniilor lor „A History of Mathematics”, în a treia ediție publicată la „John Wiley  
& Sons”, în 2010, printre paginile 90 și 108.
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lizată”25, domnia sa astfel dorind să elimine ambiguitățile și să facă cat mai „formalizabile” forma-
lismele logice. 

Așa încât, în acest context, lucrarea domniei sale a devenit punctul de plecare al perspective-
lor care – ulterior - îi vor transcende propriile-i propuneri:

„Logicismul” – propus de către domnii Frege, apoi Bertrand Arthur William Russell și Al-
fred North Whitehead presupunea reducerea aritmeticii la logică pură. 

Iar, pentru acesta „axiomele peanoiene, formulate într-un limbaj – cat se poate de - logic, au 
furnizat atât material de re-construcție a conținutului minimal al aritmeticii, cât și instrumentul nota-
țional fără de care toate acestea ar fi evoluat într-o manieră probabil mai puțin formală. 

„Formalismul” – propus prin perspectiva domnului David Hilbert, în care matematica repre-
zenta – cumva - un ansamblu de „jocuri cu semne” guvernate de axiome și reguli, în care probleme-
le consistenței sistemice devin fundamentale. 

25 „Latino sine flexione” - sau „Interlingua de Academia pro Interlingua” - reprezintă un proiect sistematic prin 
care s-a dorit crearea a ceea ce de fapt s-a dorit a reprezenta „un limbaj științific universal”, conceput sub coordona-
rea domnului Peano, între anii 1887 şi 1914.

De fapt, în articolul „De Latino Sine Flexione, Lingua Auxiliare Internationale” - publicat în 1903 în Revue de 
Mathématiques în „Tomo VIII, pp. 74-83”, publicat la „Fratres Bocca Editores: Torino” - domnul Peano fundamen-
tează această perspectivă sustentând-o pe observațiile domnului Leibniz privind posibilitatea simplificării limbii la-
tine și – în acest context - dezvoltând conceptul într-un sistem coerent şi aplicabil.

Și – în acest context - în 1908, domnia sa devine membru și director al „Akademi internasional de lingu uni-
versal” - care se transformă în 1909 în „Academia pro Interlingua” – instituție care devine platforma prin care se 
dezvoltă și se standardizează acest soi de formalism lingvistic, prin intermediul publicației oficiale „Discussiones” 
– publicată între anii 1909 și 1913.

Așa încât, principale particularități ale „Latino sine flexione” erau reprezentate, de:

Lipsa flexiunilor gramaticale - cuvintele nu își schimbau terminațiile în funcție de caz, număr sau funcția gra-
maticală

Ordinea fixă a cuvintelor - de obicei subiect-predicat-complement direct, similar limbilor romanice moderne
Vocabular simplificat – întrucât folosea rădăcini latine dar elimina formele neregulate
Absența genului gramatical – prin renunțarea la sistemul complex de definire a genurilor din „latina clasică”
Conjugare minimă - verbele aveau forme foarte simple și regulate

Spre exemplu, în loc de posibilitatea de a se propune în clasica manieră latinească:

„Malum pulchrum est”

În care „malum” reprezintă cazul nominativ neutru, iar „pulchrum” se acordă în gen neutru cu acesta, și „est” 
este forma conjugată a verbului „a fi”, „Latino sine flexion”-ian s-ar putea – pur și simplu - propune: 

„Malo es pulchra.”

Așa încât, „malo” rămâne neschimbat - „fără flexiune de caz”, „es” este forma simplificată, neconjugată a ver-
bului „a fi”, în timp ce, „pulchra” rămâne în forma de bază, fără „acordul de gen”.

Iar, domnul Peano credea că acest soi de simplificări ar face latina accesibilă ca limbă internațională modernă, 
păstrând în același timp moștenirea ei academică și științifică. 

Oricum, deși această perspectivă a suscitat un oarecare interes academic - și nu numai că a fost chiar folosită în 
publicații matematice pentru o vreme și conjunctural, s-au propus și versiuni alternative  – dar, în cele din urmă, nu 
a reușit să fie – pe deplin - adoptată.
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Așa încât, aritmetica peaniană „funcționează” în acest context ca exemplul canonic de sis-
tem deductiv finit, asupra căruia poate fi aplicat orice sistem meta-matematicist. 

„Intuționismul” inițiat de către domnul Luitzen Egbertus Jan Brouwer prin care domnia sa 
contestă legitimitatea „principiului terțului exclus”26 și a „existențelor neconstructive”, dar care își 
definește poziția printr-un soi de dialog paradigmatic peano sustenabil, chiar și când respinge unele 
metode clasice, întrucât – tot - acceptă nucleul constructiv al aritmeticii finite, bazat pe inducție și  
recursii primitive. 

Ulterior, formalizarea logicii și aritmeticii intuiționiste promovată de către domnul Arend 
Heyting oferă o contra-perspectivă celei peanoiene, dar una care rămâne calibrată pe aceeași para-
digmă mai mult ori mai puțin formal deja propusă de către domnul Peano.

26 Principiul terțului exclus  - „Principium tertii exclusi” ori „Legea mijlocului exclus” este unul dintre principiile 
fundamentale ale logicii clasice, astfel „formulabil”:

„Pentru orice propoziție P, este adevărată fie P, fie negația sa ¬P. Nu există o a treia posibilitate. «Tertium non 
datur", cu alte cuvinte, cale de mijloc nu există”.

Ori într-o notație - ceva - mai contemporană: P  ¬P∨

Deci: „Doar P sau non-P este întotdeauna adevărată”.

Precum, spre exemplu:

„Numărul 2 este par sau nu este par.”
„Ploua sau nu plouă.”

Oricum – revenind - în logica peanoiană principiul este implicit acceptat în sistemul său axiomatic, doar că, 
„constructiviștii” îl resping și consideră că o propoziție este adevărată doar dacă poate fi - cumva - „construită”.

Iar, logicienii „intuiționiștii constructiviști” – precum domnii Brouwer ori Arend Heyting repudiază explicit  
acest principiu.

Oricum, diferența esențială dintre logica constructivistă și cea intuiționistă științifică, stă tocmai în felul în care  
fiecare privește și definește adevărul matematic și existența obiectelor – matematice, în acest caz.

Constructiviștii susțin că pentru a demonstra existența unui obiect matematic, trebuie să se construiască efectiv 
acel obiect sau să se furnizeze o metodă concretă pentru a-l construi. Și nu e suficient doar să se demonstreze că o 
contradicție ar apărea dacă acel obiect nu ar exista. Așa încât, resping legea terțului exclus – adică faptul că o pro -
poziție este fie adevărată, fie falsă - argumentând că, pentru o propoziție, este posibil să nu avem nici o demonstra-
ție a adevărului, nici o demonstrație a falsității sale.

Intuiționiștii - într-o perspectiva oarecum sinoptică -  promovează formă specifică de logică constructivistă,  
susținând că obiectele matematice există doar ca produse ale minții umane. Așa încât, un obiect matematic nu are o 
existență independentă de mintea creatorului său. Iar, adevărul unei propoziții matematice este stabilit prin fie prin  
„evidența sa” mentală, fie printr-o demonstrație. 

Așa încât, „intuiționismul” este o ramură a constructivismului.
Și fiecare intuiționist este un constructivist, dar nu fiecare constructivist este un intuiționist. 
Principala diferență constând în faptul că, în timp ce constructiviștii se concentrează pe necesitatea unei con-

strucții explicite, intuiționiștii se bazează pe activitatea mentală - sau pe intuiție - ca sursă finală a realității matema -
tice. 

Spre exemplu, unii „constructiviști” pot accepta principiul ori legea terțului exclus - în anumite contexte - în 
timp ce absolut toți „intuiționiștii” le resping categoric.
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Prin urmare,  „Arithmetices Principia”  nu reprezintă doar o „listă de axiome”, ci un etalon 
metodologic care catalizează trei răspunsuri majore – divergente - la aceeași întrebare despre teme-
iul adevărului matematic: reducere logică, închidere formală, reconstrucție constructivă. 

Iar, în toate cele trei – abia sugerate - contexte, aritmetica peanoiană este fie punct de plecare 
– precum pentru „logicism sau formalism” fie referința critică – precum pentru „constructivism” ori  
pentru „intuiționism”.

Oricum – revenind - „Aritmetica Peano” reprezintă – probabil doar „în primul rând” - un sis-
tem axiomatic dezvoltat pentru construirea numerele naturale

Și deși domnia sa probabil nicidecum nu a intenționat, chiar în cea mai perspectivă „con-
structivistă” – totuși - acest soi de paradigmă „aritmeticistă” reprezintă un soi de „construcție” întru-
cât – indiferent din ce perspectivă ar fi privită - se bazează pe „pași” expliciți și recursiv promovați.

De fapt, un soi de „re-construcție”. Întrucât cel puțin în proprie-mi perspectivă domnia sa a 
„fundat o construcție deja construită”. Dar, asupra acestui detaliu, în acest context, nu voi insista. Ci  
voi reveni într-un ancadrament dedicat.

De fapt – revenind - în perspective constructiviste, inductiv privind, „nici o proprietatea nu 
există cu adevărat «până la infinit»”, ci doar pentru orice element – precum „k” spre exemplu – 
pentru care „oricând  se poate construi o dovadă pentru P(k) prin aplicări finite ale pasului inductiv.

Și mai mult chiar, deși în accepțiuni „matematicist clasiciste” se folosesc principii non-con-
structive - precum spre exemplu: „ori P, ori nu P”,  iar constructivist privind, așa ceva nu prea este 
posibil, prin Aritmetica Peano – probabil exclusiv în perspectivă constructivistă - pornind de la 1, se 
oferă o fundație solidă pentru „orice s-ar putea reprezenta prin matematică”. 

Așa încât, în acest context, am privit perspectivele peanoiene printr-o perspectivă „construc-
tivistă”, prin care numerele sunt prezentate ca și cum ar fi fiind construite pas cu pas, începând de la  
1, prin operații recursive.

De fapt – cel puțin astfel „privind” - nu s-ar presupune că acestea – cel puțin cele naturale -  
ar exista „deja” ca un mulțime infinită dată, ci sunt construite, pornindu-se de la un element de bază, 
notat de obicei cu 0 uneori 1 – în chiar acest caz - prin aplicarea unei funcții „succesor”  pentru a se  
genera următorii termeni.

Așa încât – pur și simplu:

 Dacă n este un număr natural, atunci S(n) – adică: abia menționata funcții „succesorul lui 
n” - este un număr natural.

Astfel creându-se secvența: 0, S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3 și așa mai departe.

Sau – precum în accepțiile peanoiene 1, S(1) = 2, S(S(1)) = 3, S(S(S(1))) = 4 și așa mai de-
parte.

Așa încât, fiecare număr este construit finit, prin aplicări succesive ale lui S.
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Iar, în acest context „operațiile” sunt definite recursiv, ceea ce se potrivește perspectivelor 
constructiviste, întrucât – pur și simplu - fiecare valoare este calculată pas cu pas, astfel încât:

Adunarea (+):

Cazul de bază: m + 1 = S(m) 

Pasul inductiv: m + S(n) = S(m + n)

Precum spre exemplu:

Pentru a calcula 2 + 3:

2 + 3 = 2 + S(2) = S(2 + 2) = S(S(2 + 1)) = S(S(S(2))) = S(S(S(S(1)))) = 5. 

Așa încât, fiecare pas reprezintă o „construcție” explicită.

Înmulțirea (×):

Cazul de bază: m × 1 = m

Pasul inductiv: m × S(n) = m + (m × n)

Precum, spre exemplu:

3 × 2 = 3 + (3 × 1) = 3 + 3 = S(S(S(3))) = S(S(S(S(S(S(1)))))) = 6. 

Deci – și în acest caz - fiecare pas reprezintă o „construcție” explicită.

Iar, celelalte operații - precum scăderea sau diviziunea – care nu sunt „complet închise” în 
mulțimea numerelor naturale – întrucât spre exemplu, 2 – 3 = - 1, iar „-1” nu este nicidecum un nu-
măr natural – nu sunt astfel definite, dar constructivist privind, pot fi definite chiar în momentul în 
care astfel de „construcții” au sens.

Oricum – revenind - aproape „toată aritmetica peanoeană” se fondează pe „Principiul Induc-
ției  Constructive”  –  și  de  altfel,  tot  „constructivist  privind”  reprezintă  un  concept  acceptabil,  
întrucât implică succesiuni absolut succesiv ordonate de construcții.

Așa încât: 

Pentru orice proprietate P(n) care poate fi „ constructiv definită” - adică, decidabilă sau cu 
dovadă explicită:

Dacă P(1) este adevărat – în „cazul de bază”.

Și dacă, pentru orice n, dacă P(n) cu adevarat există, atunci P(S(n)) cu adevarat există - „pa-
sul inductiv”.
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Atunci, pentru orice număr natural k, P(k) este adevărat.

Și atunci:

„ARITHMETICES PRINCIPIA

NOVA METHODO EXPOSITA

A

IOSEPH PEANO

in R. Academia militari professore

Analysin infinitorum in R. Taurinensi Athenæo docente.

[F, B, Labor et honor]

AUGUSTAE TAURINORUM

EDIDERUNT FRATRES BOCCA
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Romae  Florentiae
Via del Corse, 216-217. Via Oerretani, 8.

 
1889

PRAEFATIO 

Quaestiones, quae ad mathematicae fundamenta pertinent,  etsi  hisce temporibus a multis 
tractatae, satisfacienti solutione et adhuc carent. Hic difficultas maxime ex sermonis ambiguitate  
oritur. 

Quare summi interest verba ipsa, quibus utimur attente perpendere. Hoc examen mihi propo-
sui, atque mei studii resultatus, et arithmeticae applicationes in hoc scripto expono. 

Ideas omnes quae in arithmeticae principiis occurrunt, signis indicavi, ita ut quaelibet propo-
sitio his tantum signis enuncietur. 

Signa aut ad logicam pertinent, aut proprie ad arithmeticam. Logicae signa quae hic occur-
runt, sunt numero ad decem, quamvis non omnia necessaria. Horum signorum usus et proprietas 
nonnullae in priore parte communi sermone explicantur. Ipsorum theoriam fusius hic exponere no-
lui. Arithmeticae signa, ubi occurrunt, explicantur. 

His notationibus quaelibet propositio formam assumit atque praecisionem, qua in algebra ae-
quationes gaudent, et a propositionibus ita scriptis aliea deducuntur, idque processis qui aequatio-
num resolutioni assimilantur. Hoc caput totius scripti. 

Sique, confectis signis quibus arithmeticae propositiones scribere possim, in earum tractatio-
ne usus sum methodo, quam quia et in aliis studiis sequenda foret, breviter exponam. 

Ex arithmeticae signis quae caeteris, una cum logicae signis exprimere licet, ideas signifi-
cant quas definire possumus. Ita omnia definivi signa, si quatuor excipias, quae in explicationibus 
§1 continentur. Si, ut puto, haec ulterius reduci nequeunt, ideas ipsis expressas, ideis quae prius no-
tae supponuntur, definire non licet.

Propositiones, quae logicae operationibus a caeteris deducuntur, sunt Theoremata; quae vero 
non, axiomata vocavi. Axiomata hic sunt novem (§1) et signorum, quae definitione carent, proprie-
tates fundamentales exprimunt. 

In §1-6 numerorum proprietates communes demonstravi; brevitatis causa, demonstrationes 
praecedentibus similes omisi; demonstrationum communem formam immutare oportet ut logicae 
signis exprimantur; haec transformatio interdum difficilior est, tamen inde demonstrationis natura 
clarissime patet. 

In sequentibus § varia tractavi, ut huius methodi potentia magis videatur. In §7 nonnulla 
Theoremata, quae ad numerorum theoriam pertinent, continentur. In §8 et 9 rationalium et irrationa-
lium definitiones inveniuntur. 

Denique, in §10, Theoremata exposui nonnulla, quae nova esse puto, ad entium theoriam 
pertinentia, quae cl.mus Cantor Punktmenge (ensemble de points) vocavit. 
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In hoc scripto aliorum studiis usus sum. Logicae notationes et propositiones quae in num. II, 
III et IV continentur, si nonnullas excipias, ad multorum opera, inter quae Boole praecipue, referen-
da sunt.

 Boole:
The mathematical analysis of logic ... Cambridge, 1847.
The calculus of logic, Camb. and Dublin Math. Journal, 1848.
An investigation of the laws of thought ... London, 1854.

E. Schröder:
Der Operationskreis des Logikkalculus, Leipzig, 1877.

Ipse iam nonnulla quae ad logicam pertinent tractavit in praecedenti opera.

Lehrbuch der Arithmetik und Algebra ... Leipzig, 1873.

Boole e Schröder theorias brevissime exposui in meo libro calcolo geometrico ... Torino, 
1888.
vide:

C. S. Pierce:
On the Algebra of logic; American Journal, III, 15; vII, 180.

Jevons:
The principles of science, London, 1883.

McColl:
The calculus of equivalent statements, Proceedings of the London Math. Society, 1878, vol. 

IX, 9. vol X, 16.

Signum  ϵ, quod cum signo Ɔ confundere non licet, inversionis in logica applicationes, et 
paucas alias institui conventiones, ut ad exprimendam quamlibet propositionem pervenirem. 

In arithmeticae demonstrationibus usus sum libro: H. Grassmann, Lehrbuch der Arithmetik, 
Berlin 1861. 

Utilius quoque mihi fuit recens scriptum: R. Dedekind, Was sind und Was sollen die Zahlen; 
BraunschWeig, 1888, in quo quaestiones, quae ad numerorum fundamenta pertinent, acute exami-
nantur. 

Hic meus libellus ut novae methodi specimen habendus est. Hisce notationibus innumeras 
alias propositiones, ut quae ad rationales et irrationales pertinent, enunciare et demonstrare possu-
mus. 

Sed, ut aliae theoriae tractentur, nova signa, quae nova indicant entia, instituere necesse est. 
Puto vero his  tantum logicae signis  propositiones cuiuslibet  scientiae  exprimi posse,  dummodo 
adiungantur signa quae entia huius scientiae representant.”

Cu alte cuvinte:
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TORINO

PUBLICAT DE FRAȚII BOCCA

Librari regali

Roma Florența
Strada del Corso, 216-217. Strada Cerretani, 8.

 
1889

PREFAȚĂ

Problemele legate de fundamentele matematicii, deși tratate în zilele noastre de mulți, încă 
nu au primit o soluție satisfăcătoare. Această dificultate provine în principal din ambiguitatea limba-
jului.

De aceea, este foarte important să alegem cu atenție cuvintele pe care le folosim. Drept pen-
tru care mi-am propus acest exercițiu, iar rezultatele studiului meu, precum și aplicațiile aritmetice,  
sunt expuse în această lucrare.

Și am reprezentat toate ideile care apar în principiile aritmeticii prin semne, astfel încât fie -
care propoziție să fie exprimată doar prin aceste semne.

Semnele aparțin fie logicii, fie propriu-zis aritmeticii. Semnele logice care apar aici sunt în  
număr de zece, deși nu toate sunt necesare. Iar, utilizarea și proprietățile acestor semne sunt explica-
te în parte în limbaj natural în secțiunea introductivă. Nu am dorit să dezvolt aici în detaliu teoria  
lor. Semnele aritmetice sunt explicate acolo unde apar.

Cu aceste notații, fiecare propoziție capătă o formă și o precizie comparabile cu cele ale  
ecuațiilor algebrice, iar din propozițiile astfel scrise se deduc altele, printr-un proces asemănător re-
zolvării ecuațiilor. Aceasta este esența întregii lucrări.

Astfel, după ce am stabilit semnele cu care pot exprima propozițiile aritmetice, am folosit în 
tratarea lor o metodă pe care, deoarece ar putea fi aplicată și în alte domenii, o voi descrie pe scurt.

Din semnele aritmetice, împreună cu cele logice, se pot exprima idei pe care le putem defini.  
Astfel, am definit toate semnele, cu excepția a patru, care sunt explicate în paragraful §1. Dacă, așa 
cum cred, aceste semne nu pot fi reduse mai departe, ideile exprimate prin ele nu pot fi definite prin 
idei presupuse a fi cunoscute anterior.
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Propozițiile deduse din alte propoziții prin operații logice sunt numite „teoreme”; cele care 
nu sunt deduse astfel le-am numit „axiome”. Aici există nouă axiome (§1) care exprimă proprietăți-
le fundamentale ale semnelor care nu au o definiție.

În paragrafele §1-6 am demonstrat proprietățile generale ale numerelor; pentru concizie, am 
omis demonstrațiile similare celor precedente; forma generală a demonstrațiilor trebuie modificată 
pentru a fi exprimată prin semne logice; această transformare este uneori mai dificilă, dar astfel na-
tura demonstrației devine extrem de clară.

În paragrafele următoare am tratat  diverse subiecte,  pentru a evidenția  mai  bine puterea 
acestei metode. În §7 sunt incluse câteva teoreme referitoare la teoria numerelor. În §8 și §9 se gă-
sesc definițiile numerelor raționale și iraționale.

În sfârșit, în §10, am expus câteva teoreme pe care le consider noi, referitoare la teoria enti -
tăților, pe care distinsul domn Cantor le-a numit „Punktmenge”27 - mulțime de puncte.

În această lucrare m-am bazat pe studiile altora. Notațiile logice și propozițiile conținute în 
numerele II, III și IV, cu câteva excepții, se raportează la lucrările multora, în special ale lui Boole.

Boole28:

27 De fapt, domnul Cantor nu a folosit chiar termenul „Punktmenge” în lucrările domniei sale.
Domnia sa a propus o serie de lucrări intitulate „Über unendliche lineare punktmannichfaltigkeiten” – între anii 

1879 și 1884 în „Mathematische Annalen.” - unde folosea termenul „Punktmannichfaltigkeiten” - varietăți de punc-
te/mulțimi de puncte.

Așa încât, folosea termenul „Mannigfaltigkeit” - varietate/mulțime - pentru ceea ce actualmente numim „set”,  
termenul german modern fiind „Menge”.

Deci, probabil domnul Peano a folosit expresia „Punktmenge” pentru a reprezenta cât mai expresiv conceptul 
domnului Cantor. Iar, expresia – franceză - „ensemble de points” ar putea fi o traducere ceva mai fidelă a acestuia,  
deși nici aceasta nu este exact terminologia originală germană promovată de către domnul Cantor.

Oricum, în acest context, domnia sa a promovat o teorie riguroasă a mulțimilor infinite de puncte, cu accent pe 
cardinalitate și numere transfinite, distincția între cardinalitatea mulțimii numerelor naturale și cea a numerelor rea -
le, punând bazele „ipotezei continuumului”, analiza mulțimilor derivate și a proprietăților topologice ale „dreptei 
reale” care au influențat topologia și analiza.

Așa încât, altfel spus, a formulat fundamente pentru teoria mulțimilor, care – ulterior - au devenit esențiale pen-
tru matematică.

Iar, prin „Ipoteza continuumului”, formulată de către domnul Cantor, se referă la cardinalitatea – altfel spus:  
„mărimea” - mulțimilor infinite și afirmă că: nu există nicio mulțime a cărei cardinalitate să fie strict mai mare de-
cât cardinalitatea numerelor naturale și strict mai mică decât cardinalitatea numerelor reale. Și a rămas ... indecidab -
ilă.

În timp ce – desigur – „dreapta reală” se referă la mulțimea numerelor reale, reprezentată ca o liniepur și sim -
plu infinită.

Dar, în acest context, nu voi insista asupra mai multor detalii.
28 „The Mathematical Analysis of Logic”, Cambridge, 1847 – lucrarea domnului George Boole, publicată la, 

Cambridge: Macmillan, Barclay, & MacMillan; London: George Bell”, în 1847 - este lucrarea care a revoluționat  
„logica”, marcând desprinderea de tradițiile aristotelice bazată pe silogisme, domnia sa – de altfel - fiind primul lo -
gician care a aplicat cu succes metodele algebrice logicii, punând astfel bazele a ceea ce – desigur - actualmente se  
reprezintă prin „algebra booleană și calculul propozițional”, în timp ce a înlocuit limbajul naturală cu simboluri ma -
tematice pentru a putea exprima relații logice și a creat un sistem formal pentru manipularea conceptelor - în acest  
context – implicate.

„The Calculus of Logic” – lucrare publicată în „Cambridge and Dublin Mathematical Journal”, în volumul III  
din 1848 printre paginile 183 și 198 - aparținând tot domnului George BooleDa, lucrarea „The Calculus of Logic”  
reprezintă o extindere a ideilor domniei sale propuse în „The Mathematical Analysis of Logic” în care rafinează al -
gebra logică, introducând un sistem simbolic pentru a exprima și manipula propoziții logice folosind operații alge -
brice. 

Desigur, ambele lucrări prezintă perspective complementar sinoptice și formează nucleul algebrei booleene, în 
timp ce, revenind:

„An Investigation of the Laws of Thought” – publicată la „London - Walton and Maberly” în 1854 reprezintă o 
dezvoltare a „algebrei booleene”, în care domnul Boole – desigur - formalizează logica deductivă și propune bazele 
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„The Mathematical Analysis of Logic”, Cambridge, 1847.
„The Calculus of Logic”, Cambridge and Dublin Mathematical Journal, 1848.
„An Investigation of the Laws of Thought”, London, 1854.

E. Schröder29:

„Der Operationskreis des Logikkalculus”, Leipzig, 1877.

De fapt, el însuși a tratat deja unele lucruri care se referă la logică în:

teoriei probabilităților folosind metode algebrice. 
Și este mult mai extinsă decât lucrările anterior menționate - aproximativ 400 de pagini - și este considerată un 

alt fundament al „logicii matematice moderne”.
29 În „Der Operationskreis des Logikkalküls”, publicată de către domnul Ernst Schröder în 1877 la Leipzig, - la 

Editura B.G. Teubner – domnia sa revizuiește în mod critic logica claselor abia propusă de către domnul George 
Boole, subliniind ideea dualității între „adunarea logică și înmulțirea logică” în timp ce propune o notație mai clară 
pentru operațiile logice și clarifică concepte precum subsumarea - incluziunea logică - și cuantificarea.

Așa încât:

a. În cazul „adunării logice” - OR, ∨, + - A  B = ∨ „A sau B”, rezultatul este adevărat dacă cel puțin unul din-
tre A sau B este adevărat.

b. În „înmulțirii logice”- AND, , × - A  B = „∧ ∧ A și B”, rezultatul este adevărat doar dacă ambele A și B sunt 
adevărate.

Cu alte cuvinte, domnul Schröder propune conceptul unui „cerc operațional” – Operationskreis – prin care des-
crie modul în care operațiile logice  sunt simetric relaționate.∨∧

c. Legea idempotenței: A  B∨  = A și A  B∧  = A.
d. Legea absorbției: A  ∨ (A  B∧ ) = A și A  ∧ (A  B∨ ) = A

Ceea ce conduce spre ceea ce actualmente reprezintă:

e: Dualitatea - „Legile lui De Morgan”, care sunt expresii „duale”:

1. „Nu (A sau B)” ≡ „Nu A ȘI NU B” ori formal: ¬(A  B) ≡ ¬A  ¬B∨ ∧
2. „Nu (A și B)” ≡ „Nu A SAU NU B” ori formal: ¬(A  B) ≡ ¬A  ¬B∧ ∨

Și totodată – așa precum abia am sugerat și probabil influențat de către perspectivele domnului Charles San-
ders Peirce - domnia sa promovează în ancadrament boolean „subsumarea și cuantificarea”

De fapt, „subsumarea” reprezintă „incluziunea logică”: A  B⊆  ori A este subsumată de B, altfel spus „Toate 
elementele din A aparțin și lui B”, precum spre exemplu: „filosofii  oameni⊆ ”

Iar – tot în acest context - „cuantificarea” se referă la conceptele, pur și simplu atât denotate cât și reprezentate,  
de: „  ∀ ” pentru „toate” și „  ∃ ” pentru „există”.

Așa încât, domnul Schröder a folosit „cuantificatori” pentru a exprima propoziții de tipul „pentru orice x, x are 
proprietatea P” sau „există un x astfel încât x satisface (x, y)ℝ ” extinzând - astfel - algebra booleenă, care era limi-
tată la operații statice pe clase, fără a lua în considerare variabile individuale cuantificate.

Spre exemplu, domnia sa a dezvoltat o notație pentru relații binare, cum ar fi (x, y)ℝ  și a folosit cuantificatori 
pentru a exprima afirmații generale, pentru a putea exprima „pentru orice x, există un y astfel încât x satisface rela-
ția ℝ cu y” folosind o combinație de operații booleene și cuantificatori, ceea ce a anticipat logica de ordinul întâi  
modernă.

Dar, nici asupra acestor detalii – în acest context – nu voi insista.
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„Lehrbuch der Arithmetik und Algebra”, Leipzig, 187330.

Eu însumi am tratat deja câteva aspecte - foarte pe scurt - legate de teoriile lui domnilor 
Boole și Schröder, în anterioara mea lucrarea - „Calculo geometrico”, Torino, 188831.

Vezi și:

C. S. Peirce:

On the Algebra of Logic, American Journal, III, 15; VII, 18032.

Jevons:

 The Principles of Science, London, 188333.

30 Iar, în „Lehrbuch der Arithmetik und Algebra: für Lehrer und Studirende” - publicată la „B. G. Teubner”, în  
Leipzig, în 1873 - domnul Schröder deja promovase o abordare riguroasă a aritmeticii și algebrei, definind concepte  
precum mulțimea, numerele cardinale și ordinale și operațiile algebrice fundamentale - adunare, scădere, înmulțire,  
împărțire, ridicare la putere, extragere a rădăcinii, logaritmare. Și – alături de toate acestea - propunea un limbaj for-
mal pentru a clarifica operațiile matematice, discutând noțiuni precum comparația numerelor și utilizarea paranteze-
lor pentru a evita ambiguitățile. 

31 În „Calcolo Geometrico secondo l'Ausdehnungslehre di H. Grassmann, preceduto dalle operazioni della logica 
deduttiva” – publicată la „Fratelli Bocca Editori”, în Torino, în 1888 – domnia sa a prezentat elementele de bază ale  
calculului geometric și a dat definiții noi pentru lungimea unui arc și pentru aria unei suprafețe curbe 

De fapt, domnia sa promova și dezvoltă ideile din „Ausdehnungslehre” - teoria extensiunii – deja propuse de 
către domnul Hermann Grassmann – și reprezentată de un sistem matematic care operează cu entități geometrice 
într-un mod analog algebrei numerice.

Așa încât, în acest context, domnul Peano expune „calculul vectorial” într-o formă „pre-modernă”, „operații  
geometrice sistematice” analoge celor algebrice bazate pe numere, noi definiții pentru lungimea unui arc și aria unei 
suprafețe curbe cât și o metodă mai puternică decât geometria analitică clasică.

32 De fapt, domnul Peirce a publicat două lucrări intitulate „On the Algebra of Logic” în American Journal of  
Mathematics, prima în 1880 în volumul III, numărul 1, printre paginile 15 și 57 și a doua în 1885 în volumul VII, 
numarul. 2, printre paginile 180 și 202, în care a extins algebra booleană, formalizând operațiile logice - conjuncție,  
disjuncție, negație - pentru a crea un sistem riguros bazat pe clase, a formulat o algebră a relațiilor, extinzând logica  
dincolo de propoziții simple, permițând formalizarea relațiilor între entități, a dezvoltat conceptul de „principiu con-
ducător”, ca regulă generală pentru validitatea inferențelor logice, punând astfel bazele unei abordări sistematice a 
raționamentului, în timp ce, a propus termenul „cuantificator” și a dezvoltat logica predicatelor de ordinul întâi, for -
malizând noțiuni precum „toți” (  ∀ ) și „există” (  ) esențiale pentru logica modernă - astfel promovând o notație lo∃ -
gică clară și eficientă și totodată propunând principii pentru crearea simbolurilor logice care să faciliteze raționa-
mentul, influențând standardizarea notațiilor matematice – și în care, desigur, a rafinat algebra relațiilor, integrând 
contribuțiile domnului Oscar Howard Mitchell - care a introdus indici pentru a exprima relații complexe - consoli -
dând bazele logicii simbolice.

33 De fapt, domnul  William Stanley Jevons în „The Principles of Science: A Treatise on Logic and Scientific 
Method” – publicată la „London, Macmillan and Co.” în 1883, a patra ediție, revizuită din prima, din 1874, - printre 
altele – propunea:

a. „Unificarea inducției și deducției” argumentând că, inducția nu este o metodă distinctă de deducție, ci mai  
degrabă o aplicare inversă a acesteia. 

Tradițional, în filosofie și logică, deducția și inducția sunt considerate forme distincte de raționament, așa încât:

Deducția: plecând de la premise generale se ajunge la o concluzie specifică, care este logic necesară dacă pre -
misele sunt adevărate. 

Spre exemplu:
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McColl: 

The Calculus of Equivalent Statements, Proceedings of the London Mathematical Society, 
1878, vol. IX, 9; vol. X, 1634.

Semnul ϵ, care nu trebuie confundat cu semnul Ɔ, aplicațiile inversiunii în logică și câteva 
alte convenții le-am stabilit pentru a putea exprima orice propoziție.

Premisă: Toți oamenii sunt muritori.
Premisă: Socrate este om.
Concluzie: Socrate este muritor.

Inducția: plecând de la observații specifice se ajunge la o generalizare, care este doar probabilă, nu necesară. 

Spre exemplu:

Observație: Soarele a răsărit în fiecare dimineață observată.
Concluzie: Soarele va răsări mâine dimineață.

Doar că, domnul Jevons a contestat această strictă separare, susținând că inducția poate fi înțeleasă ca un pro-
ces logic strâns legat de deducție, în sensul că procesul inductiv implică tot un raționament logic, dar orientat în  
sens opus: în loc să pornească de la general la particular - ca deducția - inducția construiește generalizări pornind de  
la cazuri particulare. 

Și mai mult chiar, a sugerat că acest proces poate fi formalizat folosind principii logice similare - folosind un  
sistem bazat pe algebra logică inspirată din perspectivele domnului George Boole - întrucât inducția implică formu -
larea unei ipoteze generale - o lege sau o regulă -care explică observațiile specifice, iar această ipoteză este apoi tes -
tată deductiv. 

Astfel, în loc să reprezinte un proces complet separat, inducția este o etapă preliminară care generează ipoteze,  
iar deducția verifică dacă aceste ipoteze sunt consistente cu observațiile. Așa încât - pur și simplu - formalizarea lo-
gică a inducției implică transformarea observațiilor într-un cadru logic, unde ipoteza generală este o concluzie deri -
vată din premisele observaționale - dar cu o probabilitate, nu cu certitudine absolută.

Așa încât:

Observațiile specifice – datele - sunt considerate premise.
Se formulează o ipoteză generală care să explice aceste observații.
Apoi, această ipoteză este apoi testată deductiv pentru a verifica dacă este compatibilă cu alte observații.

Spre exemplu, în loc să se clameze „se observă că soarele răsare zilnic, deci va răsări mereu” – clasic-inductiv 
- procesul s-ar putea re-formula astfel:

Premise: Soarele a răsărit în zilele observate – la date specifice.
Ipoteză: Există o lege generală conform căreia soarele răsare zilnic.
Test deductiv: Dacă legea este adevărată, atunci soarele va răsări mâine (verificăm ipoteza).

b. A introdus metode precum „substituția similarilor” și a promovat utilizarea unor instrumente logice, cum ar  
fi „logicul abecedarium” și „mașina logică” - logical piano - pentru a rezolva probleme logice complexe.

c. Jevons a subliniat importanța metodelor precise de măsurare și observație în știință și a dezvoltat o teorie a  
inducției bazată pe probabilitate și testarea ipotezelor, promovând o abordare ipotetico-deductivă și astfel criticând 
empirismul și susținând că legile generale sunt doar „probabile” din cauza limitărilor observației complete.
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În demonstrațiile aritmetice am folosit  lucrarea domnului:  H. Grassmann, „Lehrbuch der 
Arithmetik”, Berlin, 186135.

Mi-a fost de asemenea utilă lucrarea recentă a domnului: R. Dedekind - „Was sind und was  
sollen die Zahlen”, Braunschweig, 188836 - în care problemele legate de fundamentele numerelor 
sunt examinate cu mare acuitate.

Această mică lucrare a mea trebuie considerată un exemplu a unei noi metode. Cu aceste 
notații, nenumărate alte propoziții, cum ar fi cele referitoare la numerele raționale și iraționale, pot 
fi enunțate și demonstrate. 

Dar, pentru a trata alte teorii, este necesar să se introducă noi semne care să indice noi enti-
tăți. Cred, totuși, că doar cu aceste semne logice pot fi exprimate propozițiile oricărei științe, cu 
condiția să fie adăugate semne care să reprezintă entitățile specifice acelei științe.

„Signorum tabula”

d. A integrat probabilitatea în logica științifică, considerând-o o măsură a „ignorantei raționale” sau a „așteptă-
rii raționale”.

e. A discutat despre generalizare, analogie și clasificare, subliniind importanța continuității și a proprietăților  
uniforme în științele naturii.

f. Desigur, a criticat metoda inductivă pur empirică – baconiană - promovând o abordare mai flexibilă, bazată 
pe ipoteze și teorii și subliniind curajul intelectual în formularea ipotezelor noi.

Așa încât – revenind - publicată inițial în 1874 și revizuită în 1883, lucrarea domniei sale a reprezentat un răs-
puns la dezbaterile vremii privind natura raționamentului științific, punând bazele pentru un soi de epistemologie  
modernă. 

34 De fapt, domnul Hugh MacColl a publicat seria de lucrări intitulate „The Calculus of Equivalent Statements” 
în „Proceedings of the London Mathematical Society”, incluzând articolele din 1877 - volumul IX, printre paginile 
9 și 20 - și în 1878 - volumul X, printre paginile 16 și 28 - aducând contribuții fundamentale la logica simbolică și 
la dezvoltarea unui sistem logic care a influențat logica modernă. 

Așa încât, a dezvoltat un sistem logic numit „Calculul afirmațiilor echivalente” - „Calculus of Equivalent Sta-
tements: - prin care urmărea să formalizeze raționamentul logic folosind un limbaj simbolic, care - spre deosebire 
de algebra booleană tradițională a lui George Boole, care se concentra pe clase și operații numerice, promova un 
sistem bazat pe propoziții - afirmații - și relațiile lor de echivalență:

În articolul din 1877, a prezentat 11 definiții și 8 reguli, însoțite de exemple, pentru a construi acest soi de „cal-
cul” care includeau simboluri precum A : B (implicația „A implică B”) și echivalențe precum A = AB care exprimă 
relații logice între propoziții.

În articolul din 1878, a adăugat 2 definiții și 6 reguli suplimentare, extinzând sistemul cu metode precum „sub-
stituția unității și zeroului” pentru a analiza implicațiile și elimina variabilele.

De fapt, domnia sa a definit implicația (A : B) ca o relație în care „dacă A este adevărat, atunci B este adevărat” 
mutând accentul de la logica claselor – promovată de către donul Boole la logica propozițiilor și a arătat că, impli-
cația A : B este echivalentă cu ecuația A = AB, oferind o bază algebrică pentru manipularea afirmațiilor.

Și – totodată - a analizat silogismele tradiționale, arătând că regulile promovate de către domnia sa pot cuprin-
de toate silogismele valide. 

Pentru ca, în cele din urmă, să extindă paradigma abia propusă la aplicații practice - precum ar fi determinarea 
limitelor de integrare în calculul probabilităților - totodată sugerând că acesta poate fi folosit ăpentru a investiga 
cauzele fenomenelor naturale, astfel extinzând aplicabilitatea logicii sale dincolo de ceea ce s-ar putea înțelege prin 
matematică.

Iar, prin concentrarea „calculului” domniei sale pe implicații și echivalențe propoziționale, domnul MacColl a 
anticipat concepte care au fost dezvoltate ulterior în logica modernă - precum ar fi implicația materială și logica 
modală, asupra cărora voi reveni într-un context dedicat.

35 Desigur, aceea abia menționată.
36 Desigur, tot aceea abia menționată.
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Logicam signa Arithmeticae signa

Signum  Significatio Pag. Signa 1, 2 ... = , >, <, +, −, × vulgarem habent 
significationem. Divisionis signum est /.P propositio VII

K classis X Signum  significatio  Pag.

∩ et VII, X N numerus  inte-
ger positivus

1

∪ vel VIII, X, XI ℝ num.  rationalis 
positivus

12

− non VIII, X ℚ quantitas,  sive 
numerus  realis 
positivus

16

∧ absurdum  aut 
nihil

VIII, XI Np numerus  pri-
mus

9

Ɔ deducitur  aut 
continetur

VIII, XI M maximus 6

= est aequalis VIII W minimus 6

ϵ est X T terminus,  vel 
limes summus

15

[ ] inversionis sig-
num

XI Ɗ dividit 9

϶ qui vel [ϵ] XII Ɖ est multiplex 9

Th Theorema XVI π est primus cum 6

Hp Hypothesis

Ts Thesis

L logica

Signa composita

− < non est minor

=  >∪ est aequalis aut 
maior

϶ Ɗ divisor

M ϶ Ɗ maximus  divi-
sor

Deci: 

Tabelul de simboluri
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Semne logice Semne aritmetice

Simbol  Semnificație Pag. Semnele 1, 2 ... = , >, <, +, −, × au semnificația 
obișnuită. Semnul împărțirii este /.P Propoziție VII

K Clasă/
Mulțime/Set

X Simbol  Semnificație Pag.

∩ ȘI  –  „intersec-
ție”,  „produs” 
(deși  actual-
mente  pentru 
ȘI  se  folosește 
și „ ”)∧

VII, X N Numere întregi 
și  pozitive  or 
„N”aturale,  cu 
alte cuvinte.

1

∪ SAU  –  „reu-
niune”  (deși 
actualmente 
pentru SAU se 
folosește  și 
„ ”)∨

VIII, X, XI ℝ Numere  rațio-
nale pozitive

12

− NU  (actual-
mente ¬)

VIII, X ℚ Cantitate  sau 
număr real po-
zitiv

Deși,  desigur, 
în  accepțiuni 
contemporane 
„ ”  reprezintăℚ  
mulțimea  nu-
merelor  rațio-
nale,  „ ”  daℚ⁺ -
că sunt și pozi-
tive, în timp ce 
„ ”  reprezintăℝ  
mulțimea  nu-
merelor reale.

16

∧ Absurd,  fals 
sau  nimic  (ac-
tualmente  ...  = 

 ori )∅ ⊥

VIII, XI Np Numere prime
(„ ”  reprezenℙ -
tând  actual-
mente,  mulți-
mea numerelor 
prime)

9

Ɔ Se deduce (da-
că ... atunci ...) 
sau  o  mulțime 
conține  altă 
mulțime

VIII, XI M Maximul 6
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(actualmente 
 ori  –  după⊃  

caz - sau )⊆ ⊂
= EGAL VIII W37 Minimul 6

ϵ ESTE X T Punct  terminal 
sau supremum

15

[ ] semnul  de  in-
versare

XI Ɗ38 Divide 9

϶ astfel încât sau 
[ϵ] 

XII Ɖ39 Este multiplu 9

Th Teoremă XVI π „Este prim cu” 6

Hp Ipoteză

Ts Teză

L logic

Signa composita

− < nu  este  mai 
mic  decât  (ac-
tualmente ≮ )

=  >∪ este  egal  cu 
sau  mai  mare 
decât  (actual-
mente ≥ )

϶ Ɗ Divizor  (actu-
almente  |  deși 
uneori  este  fo-
losit  și  în  loc 
de  „astfel  în-
cât”)

M ϶ Ɗ cel  mai  mare 
divizor  (cm-
mdc)

Oricum, revenind:

„Logicae notationes.

I. De punctuatione.

37 În original, simbolul folosit a fost un „M ... răsturnat”.
38 În original, simbolul folosit a fost un „D”.
39 În original, simbolul folosit a fost un „D ... în oglindă”.
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Litteris a, b ... x, y ... x’ y’ ... entia indicamus indeterminata quaecumque. Entia vero deter-
minata signis, sive litteris P, K N ... indicamus. 

Signa plerumque in eadem linea scribemus. Ut ordo pateat quo ea coniungere oporteat, pa-
renthesibus ut in algebra, sive punctis .:  :: etc. utimur. ∴

Ut formula punctis divisa, intelligatur, primum signa quae nullo puncto seperantur colligen-
da sunt, postea quae uno puncto, deinde quae duobus punctis, etc. Ex. g. sint a, b, c ... signa quae-
cumque. Tunc ab . cd significat (ab)(cd); et ab . cd : ef . gh ... k significat (((ab)(cd))((ef)(gh)))k. 

Punctuationis signa omittere licet si formulae quae diversa punctuatione existerent eundem 
habeant sensum; vel si una tantum formula, et ipsa quam scribere volumus, sensum habeat. Ut am-
biguitatis periculum absit, aritmeticae operationum signis .: nunquam.

Parenthesum figura una est ( ); si in eadem formula, parentheses et puncta occurant, primum 
quae parenthesibus continentur, colligantur.

II. De propositionibus.

Signo P significatur propositio. Signum ∩ legitur et. Sint a, b propositiones; tunc a ∩ b est  
simultanea affirmatio propositionum a, b. Brevitatis causa, loco a ∩ b vulgo scribemus a b.

Signum − legitur non. Sit a quaedam P; tunc −a est negatio propositionis a. Signo  legitur∪  
vel. Sint a, b propositiones; tunc a  b idem est ac − : −a . −b.∪

[Signo V significatur verum, sive identitas; sed hoc signo numquam utimur]. 

Signum a∧ significat falsum, sive absurdum. 

[Signum C significat est consequentia; ita b C a legitur b est consequentia propositionis a. 
Sed hoc signo nunquam utimur]. 

Signum Ɔ significat deducitur; ita a Ɔ b significat quod b C a. Si propositiones a, b entia in-
determinata continent x, y ... scilicet sunt inter ipsa entia conditiones, tunc a Ɔx,  y ... b significat: 
quaecumque sunt x, y ... a propositione a deducitur b. Si vero ambiguitatis periculum absit, loco Ɔx, y 

... scribemus solum Ɔ.

Signum = significat est aequalis. Sint a, b propositiones; tunc a = b idem significat quod a Ɔ 
b . b Ɔ a; propositio a = x, y ... b idem significat quod a Ɔx, y ... b . b Ɔx, y ... a.”

Ori – cu alte cuvinte:

Notații logice

I. Despre punctuație.

Cu literele a, b ... x, y ... x', y' ... indicăm entități indeterminate oarecare. Entitățile determi-
nate însă le indicăm cu semne sau cu literele P, K, N ...

26

https://esteticademersurilorinutile.com/
https://esteticademersurilorinutile.com/


                                    esteticademersurilorinutile.gmail.com
                                    esteticademersurilorinutile.com   

Semnele le vom scrie de obicei pe aceeași linie. Pentru ca să fie clar ordinea în care trebuie 
să le combinăm, folosim paranteze ca în algebră, sau puncte .:  :: și asa mai departe.∴  

Pentru ca o formulă împărțită cu puncte să fie înțeleasă, mai întâi trebuie să se combine sem-
nele care nu sunt separate de niciun punct, apoi cele cu un punct, după aceea cele cu două puncte și 
asa mai departe. 

De exemplu, fie a, b, c ... semne oarecare. Atunci ab . cd înseamnă (ab)(cd); și ab . cd : ef .  
gh ... k înseamnă (((ab)(cd))((ef)(gh)))k. 

Semnele de punctuație pot fi omise dacă formulele care ar exista cu punctuație diferită ar  
avea același sens; sau dacă doar o singură formulă - și anume cea pe care vrem să o scriem - are 
sens. 

Pentru ca să nu existe pericolul ambiguității, semnelor operațiilor aritmetice .: nu le folosim 
niciodată.

Simbolul pentru paranteză este ( ); dacă într-o aceeași formulă apar paranteze și puncte, se 
grupează mai întâi elementele din interiorul parantezelor.

II. Despre propoziții.

Prin semnul P se înțelege propoziție. Semnul ∩ se citește și. Fie a, b propoziții; atunci a ∩ b 
este afirmarea simultană a propozițiilor a, b. Pentru scurtime, în locul lui a ∩ b vom scrie de obicei  
a b.

Semnul − se citește nu. Fie a o anumită P; atunci −a este negația propoziției a. Semnul  se∪  
citește sau. Fie a, b propoziții; atunci a  b este același lucru cu − : −a . −b.∪

[Prin semnul V se înțelege adevărat, sau identitatea; dar acest semn nu îl folosim niciodată].

Semnul a înseamnă fals, sau absurd.∧

[Semnul C înseamnă este consecință; astfel b C a se citește b este consecința propoziției a.  
Dar acest semn nu îl folosim niciodată].

Semnul Ɔ înseamnă se deduce; astfel a Ɔ b înseamnă ceea ce înseamnă b C a. Dacă propozi-
țiile a, b conțin entități indeterminate x, y ... adică sunt condiții între aceste entități, atunci Ɔ x, y ... b 
înseamnă: oricare ar fi x, y ... din propoziția a se deduce b. Dacă însă nu există pericolul ambiguită -
ții, în locul lui Ɔx, y ... vom scrie doar Ɔ.

Semnul = înseamnă este egal. Fie a, b propoziții; atunci a = b înseamnă același lucru cu a Ɔ 
b . b Ɔ a; propoziția a = x, y ... b înseamnă același lucru cu a Ɔx, y ... b . b Ɔx, y ... a.

Așa încât:

„III. Logicae propositiones.

Sint a, b, c ... propositiones. Tunc erit:”

III. Propoziții logice.
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Fie a, b, c ... propoziții. Atunci va fi:

Notația originală Interpretare contemporană

1. a Ɔ a Orice lucru îl implică pe el însuși:

„Dacă a, atunci a.”
a → a

2. a Ɔ b . b Ɔ c : Ɔ: a Ɔ c Tranzitivitatea implicației:

„Dacă a implică b și b implică c, atunci a im-
plică c.”

 ((a → b)  (b → c)) → (a → c)∧
3. a = b . = : a Ɔ b . b Ɔ a. Egalitatea  este  echivalentă  cu  implicația  în 

ambele sensuri:

„a este egal cu b dacă și numai dacă a implică 
b și b implică a.”

 (a = b) = ((a → b)  (b → a))∧
4. a = a Orice lucru este egal cu el însuși:

„a este egal cu a.”

a = a

5. a = b . = . b = a Egalitatea este simetrică:

„Dacă a este egal cu b, atunci b este egal cu 
a.”

a = b → b = a

6. a = b . b Ɔ c : Ɔ . a Ɔ c Egalitatea păstrează implicația:

„Dacă a este egal cu b și b implică c, atunci a 
implică c.”

 ((a = b)  (b → c)) → (a → c)∧
7. a Ɔ b . b = c : Ɔ . a Ɔ c Implicația este păstrată sub egalitate.

„Dacă a implică b și b este egal cu c, atunci a 
implică c.”

 ((a → b)  (b = c)) → (a → c)∧
8. a = b . b = c : Ɔ . a = c „Tranzitivitatea egalității”:

„Dacă  a  este  egal  cu  b  și  b  este  egal  cu  c, 
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atunci a este egal cu c.”

 ((a = b)  (b = c)) → (a = c)∧
9. a = b . Ɔ . a Ɔ b Egalitatea implică o implicație într-un sens:

„Dacă a este egal cu b, atunci a implică b.”

 (a = b) → (a → b)

10. a = b . Ɔ . b Ɔ a Egalitatea implică o implicație în sens invers:

„Dacă a este egal cu b, atunci b implică a.”

 (a = b) → (b → a)

11. ab Ɔ a Intersecția a două mulțimi este inclusă în pri-
ma mulțime:

„Produsul (intersecția) lui a și b implică a.”

 (a  b) → a∧
12. ab = ba „Intersecția” este comutativă:

„Produsul (intersecția) lui a și b este egal cu 
produsul lui b și a.”

 (a  b) = (b  a)∧ ∧
13. a (bc) = (ab) c = abc „Intersecția” este asociativă:

„Intersecția dintre a cu (b și c) este egală cu 
intersecția (a și b) cu c, care este egal cu inter-
secția a, b și c.”

 (a  (b  c)) = ((a  b)  c) = (a  b ∧ ∧ ∧ ∧ ∧ ∧ 
c)

14. aa = a Din intersecția unei mulțimi cu ea însăși rezul-
tă aceeași mulțime:

„Intersecția a cu a însuși este egal cu a.”

 (a  a) = a∧
15. a = b . Ɔ . ac = bc Egalitatea păstrează intersecția:

„Dacă a este egal cu b, atunci intersecția dintre 
a și c este egală cu intersecția dintre b și c.”

(a = b) → ((a  c) = (b  c))∧ ∧
16. a Ɔ b . Ɔ . ac Ɔ bc „Implicația se păstrează în intersecție”:
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„Dacă a implică b, atunci intersecția a și c im-
plică intersecția lui b și c.”

 (a → b) → ((a  c) → (b  c))∧ ∧
17. a Ɔ b . c Ɔ d : Ɔ . ac Ɔ bd Implicația se păstrează pentru intersecții:

„Dacă a implică b și c implică d, atunci inter-
secția dintre a și c implică intersecția dintre b 
și d.”

 ((a → b)  (c → d)) → ((a  c) → (b  d))∧ ∧ ∧
18. a Ɔ b . a Ɔ c : = . a Ɔ bc Implicația se distribuie peste intersecție:

„a implică b și a implică c dacă și numai dacă 
a implică intersecția dintre b și c.”

 ((a → b)  (a → c)) = ((a → (b  c))∧ ∧
19. a = b . c = d : Ɔ . ac = bd Egalitatea se păstrează pentru intersecții:

„Dacă  a  este  egal  cu  b  și  c  este  egal  cu  d, 
atunci intersecția dintre a și c este egal cu in-
tersecția dintre b și d.”

((a = b)  (c = d)) → ((a  c) = (b  d))∧ ∧ ∧
20. −(−a) = a Dublă negație anulează ... negația inițială:

„Negarea negației lui a este egală cu a.”

¬(¬a) = a

21.  a = b . = . −a = −b. Egalitatea se păstrează sub negație:

„a este egal cu b dacă și numai dacă negația 
lui a este egală cu negația lui b.”

 (a = b) = ((¬a) = (¬b))

22. a Ɔ b . = . −b Ɔ −a = „Contra-pozitiva implicației”:

„a implică b dacă și numai dacă negația lui b 
implică negația lui a.”

 (a → b) = ((¬b) → (¬a))

23. a  b . =  − : −a . −b∪ ∴ Legea lui De Morgan pentru reuniune:

„Reuniunea lui a și b este echivalentă cu nega-
ția conjuncției negațiilor lui a și b.”
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(a  b) = ¬((¬a)  (¬b))∨ ∧
24. −(ab) = (−a)  (−b)∪ Legea lui De Morgan pentru intersecție:

„Negația conjuncției dintre a și b este egală cu 
reuniunea negației lui a cu negația lui b.”

 ¬(a  b) = (¬a)  (¬b)∧ ∪
25. −(a  b) = (−a) (−b)∪ Cealaltă lege a lui De Morgan:

„Negația reuniunii lui a și b este egală cu con-
juncția negației lui a cu negația lui b.”

 ¬(a  b) = (¬a)  (¬b)∪ ∧
26. a Ɔ . a  b∪ Orice mulțime este inclusă în reuniunea sa cu 

o altă mulțime:

„a implică reuniunea lui a cu b.”

a → (a  b)∪
27. a  b = b  a∪ ∪ Reuniunea este comutativă:

„Reuniunea lui a cu b este egală cu reuniunea 
lui b cu a.”

a  b = b  a∪ ∪
28. a  (b  c) = (a  b)  c = a  b  c∪ ∪ ∪ ∪ ∪ ∪ Reuniunea este asociativă.

„Reuniunea lui a cu (b reunit cu c) este egală 
cu reuniunea lui (a reunit cu b) cu c, care este 
egală cu reuniunea lui a, b și c.”

a  (b  c) = (a  b)  c = a  b  c∪ ∪ ∪ ∪ ∪ ∪
29. a  a = a∪ Din reuniunea unei mulțimi cu ea însăși rezul-

tă aceeași mulțime:

„Reuniunea lui a cu el însuși este egală cu a.”

a  a = a∪
30. a (b  c) = ab  ac∪ ∪ Distributivitatea intersecției peste reuniune:

„Conjuncția  dintre  a  cu reuniunea lui  b  și  c 
este egal cu reuniunea conjuncției dintre a și b 
cu conjuncția dintre a și c.”

a  (b  c)] = [(a  b)  (a  c)]∧ ∪ ∧ ∪ ∧
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31. a = b . Ɔ . a c = b  c∪ ∪ Egalitatea păstrează reuniunea:

„Dacă a este egal cu b, atunci reuniunea lui a 
cu orice mulțime c este egală cu reuniunea lui 
b cu mulțimea c.”

(a = b) → ((a  c) = (b  c))∪ ∪
32. a Ɔ b . Ɔ . a  c Ɔ b  c∪ ∪ Implicația se păstrează pentru reuniuni:

„Dacă a implică b, atunci reuniunea lui a cu 
orice  mulțime  c  implică  reuniunea  lui  b  cu 
mulțimea c.”

((a → b)  (c → d)) → [(a  c) → (b  d)]∧ ∪ ∪
33. a Ɔ b . c Ɔ d : Ɔ : a  c . Ɔ . b  d∪ ∪ Implicația se păstrează pentru reuniuni:

„Dacă a implică b și c implică d, atunci reu-
niunea lui a și c implică reuniunea lui b și d.”

((a → b)  (c → d)) → ((a  c) → (b  d))∧ ∪ ∪
34. b Ɔ a . c Ɔ a : = . b c Ɔ a∪ Reuniunea păstrează implicația:

„b implică a și c implică a dacă și numai dacă 
reuniunea lui b și c implică a.”

((b → a)  (c → a)) = ((b  c) → a)∧ ∪
35. a − a = ∧ O mulțime minus ea însăși dă vidul:

Diferența lui a cu el însuși este mulțimea vi-
dă.”

[a  ¬a] = ∧ ∅
36. a  = ∧ ∧ Din intersecția cu „nimic, nimic nu rezultă”:

„Conjuncția  dintre  a  și  mulțimea  vidă  este 
mulțimea vidă.”

a  = ∧∅ ∅
37. a   = a∪ ∧ Reuniunea cu „nimic, nimic nu aduce” :

„Reuniunea lui a cu mulțimea vidă este egală 
cu a.”

a  = a∪∅
38. a Ɔ  . = . a = ∧ ∧ Doar „nimic, nimic nu implică”:
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„a implică mulțimea vidă dacă și numai dacă a 
– însăși - este mulțimea vidă.”

a →  = (a = )∅ ∅
39. a Ɔ b . = . a − b = ∧ Implicația este echivalentă cu „nici o diferen-

ță”.

„a implică b dacă și numai dacă din: a minus b 
rezultă mulțimea vidă.”

(a → b) = ((a  ¬b) = )∧ ∅
40. Ɔ a∧ Vidul implică orice40:

→a∅
„Mulțimea vidă implică orice mulțime a.”

41. a b = . = : a =  . b = ∪ ∧ ∧ ∧ Din reuniunea a doua „nimicuri, nimic nu re-
zultă”.
 
„Reuniunea lui a cu b este mulțimea vidă dacă 
și numai dacă a este mulțimea vidă și b este 
mulțimea vidă.”

((a  b) = ) = ((a = )  (b = ))∪ ∅ ∅ ∧ ∅

40 În logica clasică, implicația „A Ɔ B” (A implică B) este adevărată în toate cazurile, cu excepția situației în care 
A este adevărat și B este fals. În cazul propoziției  Ɔ a, „mulțimea vidă” (notată cu ) este considerată falsă în ∧ ∧
context logic (sau vidă în contextul teoriei mulțimilor). 

Întrucât – pur și simplu - mulțimea vidă, adică „ ” nu conține niciun element, nu poate fi nici „adevărată” ∧
într-un sens care să contrazică ceva. 

Astfel, dacă premisa – adică: „ ” - este falsă, adică mulțimea vidă, implicația „  Ɔ a” este automat adevăra∧ ∧ -
tă, indiferent de valoarea lui „a” . Fie că „a” este adevărată sau falsă.

Spre exemplu: 
„Ori 2 + 2 = 5 ori Socrate a fost un mare filosof.”. Și cum 2 + 2 tocmai am „demonstrat” că fac „4”, atunci mai 

rămâne doar posibilitatea ca faptul că „Socrate a fost un mare filosof” să fie adevărată.

Iar, acest „principiu” este cunoscut în logica clasică drept „ex falso quodlibet” – ori cu alte cuvinte, „din fals 
urmează orice” sau pur și simplu, „principiul exploziei”. 

Așa încât, dacă „se pornește de la ceva fals” - precum ar fi mulțimea vidă - se poate implica orice, întrucât o 
premisă întotdeauna falsă nu va fi niciodată satisfăcută pentru a contrazice concluzia.

Ori – cu alte cuvinte – revenind: „Mulțimea vidă implică orice mulțime a” înseamnă că, în formalismul logic 
propus de către domnul Peano, mulțimea vidă - care nu conține elemente - „implică” orice altă mulțime, întrucât, o 
premisă falsă- „vidul” - în acest caz - nu poate conduce spre vreo contradicție. 

Deci: „Vidul implică orice” reprezintă o modalitate concisă de a exprima această paradigmă, subliniind carac-
terul universal al implicației atunci când premisa este vidă.

Spre exemplu, dacă s-ar spune: „Dacă mulțimea vidă conține un element, atunci mulțimea a conține acel ele-
ment”, s-ar afirma un adevăr, pentru că mulțimea vidă nu conține niciun element. 

Prin urmare, premisa este falsă, iar implicația este adevărată indiferent de ce ceea ce – de fapt – chiar conține 
„a”.

Dar, asupra acestor detalii, voi reveni într-un context dedicat.
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42. a Ɔ . b Ɔ c : = : ab Ɔ c „Implicația” se distribuie peste intersecție:

„a implică că b implică c dacă și numai dacă 
conjuncția dintre a și b implică c.”

(a → (b → c)) = ((a  b) → c)∧
43. a Ɔ . b = c : = . ab = ac Implicația egalității se păstrează în intersecție:

„a implică că b este egal cu c dacă și numai 
dacă conjuncția dintre a și b este egală cu con-
juncția lui a și c.”

(a → (b = c)) = ((a  b) = (a  c))∧ ∧

Revenind:

„Sit α quoddam relationis signum (ex. gr. = , Ɔ) ita ut Ɔ a α b sit quaedam
propositio. Tunc loco − . a α b scribemus a − α b; scilicet:”

Fie α un simbol care reprezintă o relație - precum ar fi egalitatea „= ” sau implicația „Ɔ” -
astfel încât expresia „a α b” să fie o propoziție logică. În loc să scriem negația propoziției „a α b” ca  
„−(a α b)”, vom folosi notația „a − α b”. 

Notația originală Interpretare contemporană

a − = b . = : − . a = b „a nu este egal cu b” (a−= b) este echivalent cu 
„nu este adevărat că a este egal cu b” (−(a = b)).

(a ≠ b) = ¬(a = b)

a − Ɔ b . = : − . a Ɔ b „a nu implică b” (a − Ɔ b) este echivalent cu „nu 
este adevărat că a implică b” (−(a Ɔ b)).

(a  ⇸ b) = ¬(a → b)

“Ita signum − = significat non est aequalis. Si propositio a indeterminatum
continet x, a − = x  significat: sunt x quae conditioni a satisfaciunt. Signum −∧
Ɔ significat non deducitur.

Similter, si α et β sunt relationis signa, loco a α b, et a α b .  . a β b scribere∪
possumus a . α β . b et a . α  β . b. Ita, si a et b sunt propositiones, formula a . Ɔ − = . b dicit: ab a∪  
deducitur b, sed non vice versa.”

a . Ɔ − = . b : = : a Ɔ b . b − Ɔ a

Deci:

Cu alte cuvinte:
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Simbolul − = înseamnă „nu este egal”. Dacă o propoziție a conține o variabilă x, expresia a 
− = x  înseamnă că există cel puțin un x care satisface condiția a. Simbolul − Ɔ înseamnă ‘nu se∧  
deduce’.

În mod similar, dacă α și β sunt simboluri de relație, în loc să scriem a α b sau a α b .  . a β∪  
b, putem folosi notațiile a . α β . b - pentru conjuncția relațiilor a α b și a β b - și a . α  β . b -pen∪ -
tru disjuncția relațiilor a α b sau a β b. 

Astfel încât, dacă a și b sunt propoziții, formula a . Ɔ − = . b înseamnă că „din a se deduce 
b”, dar, „b nu se deduce din a”. 

Iar, așa ceva reprezintă același lucru ca și cum s-ar spune că, a implică b și b nu implică a.”

Și totodată, definește conceptul de implicație strictă ( a . Ɔ − = . b ) ceea ce înseamnă că, a 
implică b fără ca b să implice a. 

Iar, această distincție este importantă în logica formală, unde implicația strictă - doar într-o 
direcție - este diferită de echivalență - implicație în ambele direcții.

Apoi:

„Formulae:”

Adică:

Formule:

Notația originală Interpretare contemporană

a Ɔ b . b Ɔ c . a − Ɔ c : = ∧ Nu este posibil ca a să implice b, b să implice c și totuși a 
să nu implice c, întrucât asa ceva ar reprezenta o contradic-
ție.

((a → b)  (b → c)  (a  c)) = ∧ ∧ ∅⇸
a = b . b = c . a − = c : = ∧ Nu este posibil ca a să fie egal cu b, b să fie egal cu c și to-

tuși a să nu fie egal cu c, deoarece aceasta ar fi o contradic-
ție.

((a = b)  (b = c)  (a ∧ ∧ ≠ c)) = ∅
a Ɔ b . b Ɔ − = c : Ɔ . a Ɔ − = c Dacă a implică b și b implică faptul că b nu este egal cu c, 

atunci a implică faptul că a nu este egal cu c.

(a → b)  (b ∧ ≠ c) → (a ≠ c)

a Ɔ − = b . b Ɔ c : Ɔ . a Ɔ− = c Dacă a implică faptul că a nu este egal cu b și b implică c, 
atunci a implică faptul că a nu este egal cu c.

a → (a ≠ b)  (b → c) → (a ∧ ≠ c)

„Sed his notationibus raro utimur.”
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Doar că, rareori folosim aceste notații..

Oricum, revenind:

„IV. De classibus.

Signo K significatur classis, sive entium aggregatio.

Signum ϵ significat est. Ita a ϵ b legitur a est quoddam b; a ϵ K significat a
est quaedam classis; a ϵ P significat a est quaedam propositio.

Loco −(a ϵ b) scribemus a − ϵ b; signum − ϵ significat non est; scilicet:”

IV. Despre clase.

Simbolul K reprezintă o clasă, adică o colecție de entități – ori o „mulțime” sau un „set”.

Simbolul ϵ înseamnă „este”. Astfel, expresia „a ϵ b” se citește „a este un element al lui b”; „a 
ϵ K” înseamnă „a este o clasă”; „a ϵ P” înseamnă „a este o propoziție”.

În loc să scriem negația „−(a ϵ b)” (adică „nu este adevărat că a este un element al lui b”) 
vom folosi notația „a − ϵ b”, unde „− ϵ” înseamnă „nu este”.

44. a − ϵ b . = : − . a ϵ b „a nu este un element al lui b” este echiva-
lent cu faptul că „nu este adevărat că a este 
un element al lui b”.

(a ∉b) = ¬(a  b)∈
45. Signum a, b, c ϵ m significat: a, b et c sunt 

m; scilicet:

a, b, c ϵ m . = : a ϵ m . b ϵ m . c ϵ m

Simbolul a, b, c  m înseamnă că a, b și c∈  
sunt elemente ale lui m; mai precis:

A spune că, „a, b, c aparțin lui m” înseamnă 
că, a aparține lui m, b aparține lui m și c 
aparține lui m.”

a, b, c ∈ m . = : a ∈ m . b ∈ m . c ∈ m

46. Sit a classis; tunc −a significatur classis in-
diviuis constituta quae non sunt a.

a ϵ K . Ɔ : x ϵ − a . = . x − ϵ a

Fie a o clasă; atunci „−a” denotă clasa for-
mată din „tot ceea ce nu există în a”.

Dacă a este o clasă, atunci x aparține com-
plementului  lui  a este echivalent cu faptul 
că x nu aparține lui a.”

Adică, dacă a este o clasă (a  K) atunci un∈  
element  x  aparține  complementului  lui  a 
(−a) dacă și numai dacă x nu aparține lui a 
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(x ∉ a).

47. Sint a, b classes; a ∩ b, sive a b, est classis 
individuis  constituta  quae  eodem  tempore 
sunt a et b; a  b est classis individuis con∪ -
stituta qui sunt a vel b. 

a, b ϵ K . Ɔ ∴ a x . ϵ a b : = : x ϵ a . x ϵ b 

Fie a și b clase; „a ∩ b”, sau „a b”, este cla-
sa formată din „tot ceea ce este simultan în 
a și b”. 

Iar „a  b” este clasa formată din tot ceea∪  
ce este în a sau în b.

Dacă a și b sunt clase, atunci x aparține in-
tersecției lui a și b este echivalent cu faptul 
că x aparține lui a și x aparține lui b.

Adică, un element x aparține clasei a ∩ b 
dacă și numai dacă x aparține ambelor clase 
a și b.

48. a, b ϵ K . Ɔ ∴ a  x ∪ ϵ. a  b : = : x ∪ ϵ a . ∪ 
. x ϵ b 

Dacă a și b sunt clase, atunci x aparține reu-
niunii lui a și b este echivalent cu faptul că x 
aparține lui a sau x aparține lui b.”

Adică, un element x aparține clasei a  b∪  
dacă și  numai dacă x aparține lui  a sau x 
aparține lui b.

49. Signum   indicat  classem  quae  nullum∧  
continet individuum. Ita:

a ϵ K . Ɔ ∴ a =  : = : x ∧ ϵ a . = x∧

[Signo , quod classem ex omnibus indivi∧ -
duis constitutam, de quibus quaestio est, in-
dieat, non utimur]. 

Simbolul  ∧ (actualmente notat cu  )∅  de-
notă clasa care nu conține nici un element.

Dacă a este o clasă, atunci a este egală cu 
mulțimea vidă dacă și numai dacă nu există 
niciun x care să aparțină lui a.”

Adică,  o clasă a este o mulțime vidă ( )∧  
(actualmente notată cu )∅ dacă și numai da-
că nu există niciun element x care să aparți-
nă lui a. 

Iar, „x  a . = x ” înseamnă că afirmația∈ ∧  
„x  a” este falsă pentru orice x (echivalen∈ -
tă  cu  ,  falsul  logic  ori  cu  faptul  că,  de∧  
fapt, aparține ∅).

[Nu  folosim  simbolul   pentru  a  denota∧  
clasa formată din toți indivizii despre care 
este vorba].”

Adică, simbolul  nu este folosit pentru a∧  
denota  universul  (clasa  tuturor  indivizilor) 
ci doar pentru mulțimea vidă (∅).
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50. Signum Ɔ significat  continetur.  Ita  a  Ɔ  b 
significat classis a continetur in classi b.

a, b ϵ K . Ɔ ∴ a Ɔ b : = : x ϵ a . Ɔ x . x ϵ b

[Formula b C a significare potest classis b 
continet classem a; at signo C non utiumur].

Hic  signa   et  Ɔ  significationem habent∧  
quae paullo a praecedenti differt; sed nulla 
orietur ambiguitas. 
Nam si de propositionibus agatur, haec sig-
na legantur absurdum et deducitur; si vero 
de classibus, nihil et continetur. 

Simbolul Ɔ înseamnă „este conținut”. Ast-
fel, a Ɔ b înseamnă că clasa a este conținută 
în clasa b.

Adică, a este o subclasă a lui b (toate ele-
mentele lui a sunt și elemente ale lui b). De 
altfel același lucru cu ceea ce ar însemna – 
de fapt - incluziunea în teoria mulțimilor (a 
⊆41 b).

Dacă a și b sunt clase, atunci a este conținut 
în b dacă și numai dacă, pentru orice x care 
aparține lui a, x aparține și lui b.

[Formula b C a ar putea însemna că clasa b 
conține clasa a; dar nu folosim simbolul C].

Adică, domnia sa subliniază că, o notație al-
ternativă „b C a” ar putea fi folosită pentru a 
exprima incluziunea (b conține a) dar prefe-
ră să folosească „a Ɔ b” și  evită simbolul 
„C” pentru a preveni confuziile.

Aici, simbolurile  și Ɔ au o semnificație∧  
care diferă ușor de cea anterioară, dar nu va 
apărea nicio ambiguitate. 

Când este vorba de propoziții, aceste simbo-
luri se citesc „absurd” (fals) și „se deduce”; 
când este vorba de clase, ele se citesc „ni-
mic” (mulțimea vidă) și „este conținut”.

Cu alte cuvinte, domnul Peano clarifică uti-
lizarea contextual interpretabilă a simboluri-
lor  și Ɔ. ∧

În logica propozițională,  înseamnă „fals”∧  
(absurd) iar Ɔ înseamnă „implică” (se dedu-
ce). 

În  teoria  claselor,   înseamnă  „mulțimea∧  

41 Precum abia sugeram, dacă A și B sunt mulțimi:
Dacă A  B, atunci A este o submulțime a lui B și A poate fi sau nu egal cu B.⊆
Dar, dacă A este doar o submulțime a lui B, o putem scrie ca A  B.⊂
Ori formal  x ( x A → x  B)∀ ∈ ∈
Precum, spre exemplu:
A = {1, 2, 3, 4, 5} și B = {1, 2, 3, 4, 5} atunci A  B⊆
Sau dacă:
A = {1, 2, 3} și B = {1, 2, 3, 4, 5} atunci A  B⊂
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vidă”, iar Ɔ înseamnă „este conținut” (inclu-
ziune). 

Doar că – re-iterând - contextual, se poate 
determina interpretarea corespunzătoare ori 
corectă a tuturor acestora – astfel, cumva fi-
ind imposibilă orice soi de ambiguitate.

51. Formula a = b, si a et b sint classes, signifi-
cat a Ɔ b . b Ɔ a. 

Itaque:
a, b ϵ K . Ɔ ∴ a = b : = : x ϵ a . = x . x ϵ b 

Propositiones 1 ... 41 quoque subsistunt, si 
a, b... classes indicant; praeterea est:

Formula a = b, dacă a și b sunt clase, în-
seamnă că a este conținut în b și b este con-
ținut în a. 

Astfel, dacă a și b sunt clase, atunci a este 
egal cu b dacă și numai dacă, pentru orice x, 
x aparține lui a este echivalent cu x aparține 
lui b.”

Adică, egalitatea între clase (a = b) este de-
finită ca incluziune bidirecțională (a  b și⊆  
b  a). Ceea ce înseamnă că a și b au exact⊆  
aceleași elemente, ceea ce este echivalent cu 
definiția contemporană a egalității mulțimi-
lor.

Propozițiile de la aceea denotată cu 1 până 
la 41 rămân valabile și dacă a, b ... și așa 
mai departe denotă clase; și în plus, există:

Adică,  toate  propozițiile  anterioare  (1–41) 
care  inițial  se  aplicau  propozițiilor  logice 
sau altor entități, sunt valabile și în contex-
tul claselor, datorită analogiilor dintre logica 
propozițională și teoria claselor.

Și în plus:

52. a ϵ b . Ɔ . b ϵ K Dacă a aparține lui b, atunci b este o clasă.

Adică: 
Dacă  a  este  un  element  al  lui  b  (a   b)∈  
atunci b trebuie să fie o clasă (b  K) dat∈  
fiind că, doar clasele pot conține elemente. 

53. a ϵ b . Ɔ . b − = ∧ „Dacă a aparține lui b, atunci b nu este mul-
țimea vidă.”

Adică:
Dacă există un element a care aparține lui b, 
atunci b nu poate fi mulțimea vidă (∅) în-
trucât, nu ar putea conține nici un element.
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54. a ϵ b . b = c : Ɔ . a ϵ c Dacă a  aparține lui  b  și  b  este  egal  cu c, 
atunci a aparține lui c.

Adică, dacă a este un element al lui b și cla-
sele b și c sunt egale (b = c) atunci a este și 
un element al lui c. 

Ceea ce reflectă proprietatea „egalității cla-
selor”: 

Clasele egale au aceleași elemente.

55. a ϵ b . b Ɔ c : Ɔ . a ϵ c Dacă a aparține lui b și b este conținut în c, 
atunci a aparține lui c.

Adică, dacă a este un element al lui b și b 
este o subclasă a lui c (b  c) atunci a este⊆  
și un element al lui c. 
Ceea ce reflectă „tranzitivitatea incluziunii” 
în teoria mulțimilor.

56. Sit s classis, et k classis quae in s continea-
tur; 

Tunc dicimus k esse individuum classis s, si 
k ex uno tantum constat individuo. 

Itaque: 
s ϵ K . k Ɔ s : Ɔ :: k ϵ s . =  k − =  : x, y∴ ∧  
ϵ k . Ɔ x, y . x = y

Fie s o clasă și k o clasă conținută în s.

Spunem că k este un individ al clasei s dacă 
k consistă într-un singur individ.

Astfel, dacă s este o clasă și k este conținut 
în s, atunci k aparține lui s este echivalent 
cu faptul că k nu este mulțimea vidă și, pen-
tru orice x și y din k, x este egal cu y.

Adică,  se definește conceptul  de „individ” 
(element singular) al unei clase.

 O clasă k este un individ al clasei s dacă:

k este o subclasă a lui s (k Ɔ s);

k conține exact un element (adică k nu este 
vidă, k≠ ∅ și orice două elemente x, y din k 
sunt identice, x = y).

Iar, prin această formulă se sugerează că k 
aparține lui s (k  s) dacă k este o clasă cu∈  
un singur element (un „individ”).

Oricum, revenind:

„V. De inversione.
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Inversionis signum est [], eiusque usum in sequenti numero explicabimus. 

Hic tantum casus particulares exponimus. 

1. Sit a propositio, indeterminatum continens x; tunc scriptura [x] ϵ a, quae legitur ea x qui-
bus a, sive solutiones, vel radices conditionis a, classem significat individuis constitutam, quae con-
ditioni a satisfaciunt.

Itaque:”

V. Despre inversiune.

Simbolul inversiunii este [], iar utilizarea sa va fi explicată în secțiunea următoare. 

Aici prezentăm doar cazuri particulare.

1. Fie a o propoziție care conține o variabilă x. Atunci expresia [x]  a, citită ca „acele x∈  
pentru care a este adevărată” sau „soluțiile ori rădăcinile condiției a”, reprezintă clasa (mulțimea)  
formată din toate elementele care satisfac condiția a.”

Doar că - în acest context - „inversiunea” se referă la procesul de construire a tuturor valori -
lor unei variabile, care satisfac o anumită condiție logică sau matematică. 

Notația „[x]  a” este echivalentă cu ceea ce actualmente numim mulțimea soluțiilor unei∈  
ecuații sau condiții, precum spre exemplu, {x  | a(x) este adevărat}. 

Așa încât, spre și mai specific exemplu:

Dacă a este propoziția „x² = 4”, atunci „[x]  a” reprezintă clasa {x∈  | x² = 4}, adică mulțimea 
{2, −2}, întrucât, doar acestea sunt valorile lui x care satisfac condiția.

Și astfel:

57. a ϵ P . Ɔ: [x ϵ] a . ϵ K Dacă a este o propoziție, atunci clasa tuturor 
x care satisfac a este o clasă.

Adică,  dacă  a  este  o  propoziție  (a   P)∈  
atunci  mulțimea soluțiilor  lui  a  (adică {x  | 
a(x)}) este o clasă, adică aparține categoriei 
claselor (K). 

Cu alte cuvinte, operația de inversiune apli-
cată unei propoziții produce o clasă validă.

58. a ϵ K . Ɔ  [x ∴ ϵ] . x ϵ a : = a Dacă a este o clasă, atunci clasa tuturor x 
care aparțin lui a este egală cu a.
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Adică, dacă a este o clasă (a  K) atunci∈  
mulțimea  soluțiilor  propoziției  „x   a”∈  
(adică {x | x  a}) este chiar clasa a.∈  

Ceea subliniază faptul că: „{x  | x  a}” re∈ -
turnează  exact  elementele  lui  a,  deci  este 
identică cu a.

59. a ϵ P . Ɔ  x ∴ ϵ . [x ϵ] a : = a Dacă a este o propoziție, atunci x aparține 
clasei soluțiilor lui a este echivalent cu fap-
tul că a este adevărat pentru x.

Adică,  dacă  a  este  o  propoziție  (a   P)∈  
atunci  afirmația  „x  ϵ [x  ϵ]  a”  (x  aparține 
mulțimii soluțiilor lui a) este echivalentă cu 
propoziția  a  însăși  (adică  a(x)  este  adevă-
rat). 

Și  astfel,  domnia sa clarifică relația  dintre 
apartenența la clasa soluțiilor și valoarea de 
adevăr a propoziției.

60. Sint α, β propositiones indeterminatum con-
tinentes x; erit:

[x ϵ] (α β) = ([x ϵ] α) ([x ϵ] β)

Fie α și β propoziții care conțin variabila x; 
atunci clasa soluțiilor lui α și β este egală cu 
intersecția claselor soluțiilor lui α și β.

Adică, dacă α și β sunt propoziții dependen-
te de x, atunci mulțimea soluțiilor conjuncți-
ei „α β” (adică {x  | α(x)  β(x)}) este egală∧  
cu  intersecția  mulțimilor  soluțiilor 
individuale, „[x  ϵ] α ∩ [x  ϵ] β” (adică {x  | 
α(x)} ∩ {x | β(x)}). 

Ceea ce reflectă „distributivitatea intersecți-
ei peste soluții”.

61. [x ϵ] − α = − [x ϵ] α Clasa soluțiilor negației lui α este egală cu 
complementul clasei soluțiilor lui α.

Adică, mulțimea soluțiilor propoziției „¬α” 
(adică {x | ¬α(x)}) este egală cu complemen-
tul mulțimii soluțiilor lui α (adică comple-
mentul lui {x | α(x)}). 

Ceea ce reprezintă – pur și simplu - „legea 
complementului în contextul soluțiilor”.

62. [x ϵ] (α  β) = [x ∪ ϵ] α  [x ∪ ϵ] β Clasa soluțiilor lui α sau β este egală cu reu-
niunea claselor soluțiilor lui α și β.

Adică, mulțimea soluțiilor disjuncției „α ∪ 
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β” (adică {x | α(x)  β(x)}) este egală cu∪  
reuniunea mulțimilor soluțiilor individuale, 
„[x ϵ] α  [x ∪ ϵ] β” (adică {x  | α(x)}  {x∪  | 
β(x)}).

Ceea ce – pur și simplu - reflectă distributi-
vitatea reuniunii peste soluții.

63. α Ɔx β . = . [x ϵ] α Ɔ[x ϵ] β Dacă α implică β pentru toate x, atunci clasa 
soluțiilor lui α este conținută în clasa soluții-
lor lui β.

Adică, dacă propoziția α(x) implică propo-
ziția  β(x)  pentru  orice  x  (notat  „α  Ɔx β”) 
atunci mulțimea soluțiilor lui α ({x  | α(x)}) 
este o subclasă a mulțimii soluțiilor lui β ({x 
| β(x)}). 

Domnia  sa  subliniind  –  astfel  -  faptul  că, 
implicația  propozițiilor  „se  traduce” în  in-
cluziunea claselor soluțiilor lor.

64. α = x β . = . [x ϵ] α = [x ϵ] β Dacă α este echivalent cu β pentru toate x, 
atunci clasa soluțiilor lui α este egală cu cla-
sa soluțiilor lui β.

Adică,  dacă  propozițiile  α(x)  și  β(x)  sunt 
echivalente pentru orice x (notat „α = x β”) 
atunci mulțimea soluțiilor lui α ({x  | α(x)}) 
este egală cu mulțimea soluțiilor lui β ({x  | 
β(x)}). 

Ceea ce înseamnă că, echivalența propoziții-
lor implică egalitatea claselor soluțiilor lor.

„2. Sint x, y entia quacumque; system ex ente x et ex ente y compositum ut novum ens con-
sideramus, et signo (x, y) indicamus; similiterque si entium numerus maior fit. Sit α propositio inde-
terminata continens x, y; tunc [(x, y) ϵ] α significat classem entibus (x, y) constitutam, quae conditi-
oni α satisfaciunt.

Erit:”

2. Fie x și y entități entități oarecare; considerăm perechea formată din x și y ca o nouă enti-
tate și o notăm cu (x, y); același principiu se aplică dacă sunt mai multe entități. Fie α o propoziție 
care conține variabilele x și y; atunci „[(x, y) ϵ] α” reprezintă mulțimea tuturor perechilor (x, y) care 
satisfac condiția α.

Și atunci:

65. α Ɔx, y β . = . [(x, y) ϵ] α Ɔ[(x, y) ϵ] β Dacă α implică β pentru toate x și  y,  atunci 
mulțimea perechilor (x, y) care satisfac α este 
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conținută  în  mulțimea  perechilor  (x,  y)  care 
satisfac β.

66. [(x, y) ϵ] α − =  . =  [x ∧ ∴ ϵ] . [y ϵ] α − =  :∧  
− = ∧

Mulțimea perechilor (x, y) care satisfac α nu 
este mulțimea vidă dacă și numai dacă există x 
și y astfel încât α să fie adevărată.”

Doar că, propunerea perechilor ordonate (x, y) ca un soi de „noi entitate” reprezintă o contri-
buția domnului Peano, prin care se permite formalizarea relațiilor și funcțiilor - adică a regulilor 
prin care se transformă elementele dintr-o mulțime într-un rezultat - în termeni definibili ca „clase 
de perechi”. 

Iar, prin notația „[(x, y)  ϵ] α” se generalizează conceptul de inversiune („[x  ϵ] a”) pentru 
condiții cu mai multe variabile, definind mulțimea soluțiilor ca o clasă de perechi ordonate. 

Spre exemplu, dacă α este „x + y = 5”, atunci „[(x, y) ϵ] α” este mulțimea {(x, y) | x + y = 5}

Așa încât, definirea perechii (x, y) ca entitate permite formalizarea relațiilor și a funcțiilor - 
adică o regulilor care transformă elementele dintr-o mulțime într-un rezultat - în teoria mulțimilor și  
totodată, definirea claselor de soluții pentru condiții cu mai multe variabile.

În timp ce:

Prin propoziția 65, domnia sa extinde ideea de incluziune a claselor soluțiilor - din propozi-
ția 63 - la „cazul” propozițiilor cu două variabile. Ceea ce este – de fapt - o generalizare a implicați-
ei în contextul perechilor.

Spre exemplu: 

Dacă α(x, y) este „x + y = 2” și β(x, y) este „x + y ≥ 1”, atunci α implică β (întrucât x + y = 2 
implică x + y ≥ 1). 

Și astfel, mulțimea perechilor {(x, y)  | x + y = 2} este conținută în {(x, y) | x + y ≥ 1}.

Prin propoziția 66, domnia sa stabilește o condiție de existență pentru soluții, legând non-
viditatea mulțimii perechilor soluții de existența cel puțin unei perechi (x, y) care satisface condiția.

Spre exemplu: 

Pentru α(x, y) = „x + y = 2”, mulțimea {(x, y)  | x + y = 2} nu este vidă (de exemplu, (1, 1) sa-
tisface condiția). Ceea ce este același lucru ca și atunci când s-ar clama existența unui x (de exem-
plu, x = 1) pentru care există un y (de exemplu, y = 1) astfel încât x + y = 2.

„3. Sit x α y relatio inter indeterminata x et y (ex. g. in logica relationes x = y, x − = y, x Ɔ y; 
in arithmetica x < y, x > y, etc). Tunc signo [ϵ α] y ea x indicamus, quae relationi x α y satisfaciunt. 
commoditatis causa, loco [ϵ], signo utimur. Ita ϶ α y . = : [x ϵ] . x α y, et signum ϶ legitur qui, vel 
quae. 
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Ex. gr. sit y numerus; tunc ϶ < y classem indicat numeris x compositam qui conditioni x < y 
satisfaciunt, scilicet, qui sunt minores y, vel simpliciter minores y. 

Similiter, quum signum Ɗ significet dividit, vel est divisor, formula ϶ Ɗ significat qui divi-
dunt vel divisores. 

Deducitur x ϵ α y = x α y.”

3. Fie x α y o relație între variabilele x și y (de exemplu, în logică: x = y, x nu este egal cu y,  
x implică y; în aritmetică: x < y, x > y, etc.). Atunci, prin notația „[ϵ α] y”, indicăm mulțimea tuturor 
x care satisfac relația x α y.

Pentru comoditate, în loc de „[ϵ]”, folosim simbolul „϶”. Astfel, „϶ α y” este echivalent cu 
mulțimea {x | x α y}, iar simbolul ϶ se citește „care”.

De exemplu, fie y un număr; atunci ϶ < y reprezintă mulțimea numerelor x care satisfac con-
diția x < y, adică toate numerele mai mici decât y. 

În mod similar, deoarece simbolul Ɗ înseamnă „divide” sau „este divisor”,  ϶ Ɗ y indică 
mulțimea divizorilor lui y. 

Se deduce că x aparține mulțimii ϶ α y dacă și numai dacă x satisface relația x α y.

Așa încât, notația ϶ α y reprezintă o extensie a conceptului de inversiune (abia propus prin 
„[x ϵ] a”) la relații binare. Doar că, în loc să definească soluțiile unei propoziții generale, se definesc 
soluțiile unei relații x α y pentru un y fix, rezultând o clasă de x-uri.

Precum spre exemplu:

Pentru α = „<” și y = 5, „϶ < 5” este {x | x < 5}, adică toate numerele reale mai mici decât 5.
Pentru α = „Ɗ” și y = 6, „϶ Ɗ 6” este {1, 2, 3, 6}, divizorii lui 6.

Și mai mult chiar, notația „϶ α y” este flexibilă și se aplică oricărei relații binare α, fie ea lo-
gică (egalitate, implicație) sau aritmetică (inegalități, divizibilitate).

Iar, propoziția „x ϵ ϶ α y = x α y” confirmă că apartenența la clasa definită de relația α este 
echivalentă cu satisfacerea relației însăși, ceea ce reprezintă o proprietate „definitorie” a operației de 
inversiune.

„4. Sit α formula indeterminate continens x. Tunc scriptura x’ [x]α, quae legitur x’ loco x in 
α substituto, formulam indicat quae obtinetur si in α, loco x, x’ legimus.

Deducitur x[x]α = α.”

4. Fie α o formulă care conține variabila x. Atunci notația x’ [x]α, citită ca “x’ înlocuit în lo -
cul lui x în α”, reprezintă formula obținută prin înlocuirea lui x cu x’ în α.

Se deduce că, dacă x este înlocuit cu el însuși în α, formula rămâne neschimbată, adică x  
[x]α este egal cu α.

Așa încât, în acest paragraf domnia sa prezintă conceptul formal de substituție a variabilelor 
într-o formulă logică sau matematică. 
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Iar, notația „x’ [x]α” reprezintă – de fapt - o modalitate de a exprima rezultatul înlocuirii va-
riabilei x cu x’ în formula α.

Spre exemplu „substituția cu o constantă”:

Dacă α = „x + 2 = 5”. 
Și x’ = 3.

Atunci „3 [x] (x + 2 = 5)” înseamnă că înlocuim x cu 3.
Iar, x + 2 devine 3 + 2 = 5.
Și ceea ce rezultă este „5 = 5” (o propoziție adevărată).

Sau „confirmarea proprietății”: x [x]α = α

Dacă, x’ = x.
Și în continuare: α = „x + 2 = 5”. 
Atunci x’ [x]α prin înlocuirea lui x’ cu x s-ar transforma tocmai în α însuși, adică „x + 2 = 

5”, ceea ce ar confirma „proprietatea” că, de fapt: x [x]α = α.

Doar că indiferent cat de trivială ar părea, aceasta este o proprietate fundamentală în logica  
matematică, utilizată pentru a formaliza transformările și deducțiile în „sistemele peano- formaliza-
te”. Iar „proprietatea” (x [x]α = α) reprezintă o tautologie care subliniază consistența operației de 
substituție: înlocuirea unei variabile cu ea însăși nu modifică formula.

„5. Sit α formula, quae indeterminata x, y ... continet. Tunc (x’ y’ ...) [x, y ...] α, quae legitur 
x’ y’ ... loco x, y ... in α substitutis, formulam indicat quae obtinetur si in α loco x, y ... litterae  
x’y’ ... scribantur. deducitur (x, y) [x, y] α = α.

Logicae notationes quae praecedunt exprimendae cuilibet  arithmeticae propositioni suffi-
ciunt, iisdemque tantum utimur. hic notationes alias nonnullas bre iter∧
explicamus, quae utiles fieri possunt.

Sit s quaedam classis; supponimus aequalitatem inter entia systematis s definitam, quae con-
ditionibus satisfaciat:”

a = a

a = b . = . b = a

a = b . b = c : Ɔ . a = c

5. Fie α o formulă care conține variabilele x, y ... Atunci (x’, y’ ...) [x, y ...] α, citită ca ‘x’, y’  
... înlocuite în locul lui x, y ... în α’, reprezintă formula obținută prin înlocuirea simultană a lui x, 
y ... cu x’, y’ ... Se deduce că înlocuirea lui x, y cu ele însele lasă formula neschimbată: (x, y) [x, y] 
α = α.

Notațiile logice prezentate anterior sunt suficiente pentru orice propoziție aritmetică și le fo-
losim doar pe acestea. Aici explicăm pe scurt alte notații utile.

Fie s o clasă; presupunem că egalitatea între entitățile din s satisface:
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a este egal cu a.
Dacă a = b, atunci b = a.

Dacă a = b și b = c, atunci a = c.

„Sit ϕ signum, sive signorum aggregatus, ita ut si x est ens classis s, scriptura ϕ x novum in-
dicet ens; supponimus quoque aequalitatem inter entia ϕ x definitam; et si x et y sunt entia classis s,  
et est x = y, supponimus deduci posse ϕ x = ϕy. Tunc signum ϕ dicitur esse functionis praesignum in 
classi s, et scribemus ϕ ϶ F' s.“

Deci:

Fie ϕ un simbol, sau un ansamblu de simboluri, astfel încât, dacă x este o entitate a clasei s, 
expresia ϕ x să indice o nouă entitate; presupunem, de asemenea, că egalitatea între entitățile ϕ x 
este definită; și dacă x și y sunt entități ale clasei s și x = y, presupunem că se poate deduce ϕ x = ϕ  
y. Atunci simbolul ϕ este numit pre-simbol al unei funcții în clasa s și vom nota „ϕ ϶ F' s”.

În acest domnul Peano descrie conceptul de funcție - adică o regulă care transformă elemen-
tele dintr-o mulțime într-un rezultat - într-un mod formal, folosind limbajul propriul logic.

De fapt, într-o perspectivă ceva mai expresivă, asociată acestui context:

O funcție este o relație care asociază fiecărui element dintr-o „mulțime” – „set” sau „clasă”  
de elemente - numită „domeniu” un singur element dintr-o altă – ori posibil din aceeași – mulțime, 
„set” sau „clasă” de elemente, numită „codomeniu” – ori cu alte cuvinte, ceva mai expresiv spus 
„celălalt domeniu”.

Sau – cu alte cuvinte - o regulă prin care se transformă elementele dintr-o mulțime într-un 
„rezultat”.

Iar „imaginea” reprezintă partea din codomeniu care este efectiv „asociată”. 
Imaginea – desigur - nu reprezintă toate elementele din codomeniu, întrucât nu întotdeauna 

chiar toate acestea trebuie să fie folosite de funcție, ci doar o parte din ele. 
Iar, partea aceea care chiar este „asociată” formează „imaginea”.

Dar – asupra acestui concept - voi reveni.

 Așa încât – revenind - ϕ reprezintă o funcție care aplică o transformare asupra elementelor 
clasei s, iar proprietatea esențială este că păstrează egalitatea: dacă două elemente x și y din clasa s  
sunt egale, atunci și rezultatele funcției ϕ x și ϕ y sunt egale. 

Iar, prin „ϕ F' s” se indică faptul că, ϕ este un simbol al unei funcții definite pe clasa s.

Logic – formal, adică:

Notația originală Interpretare contemporană

s ϶ K . Ɔ :: ϕ F' s . =  x, y ∴ ϵ s . x = y : Ɔx, y . ϕx 
= ϕy

Pentru orice clasă s care aparține mulțimii clase-
lor K, ϕ este un pre-simbol al unei funcții în clasa 
s dacă și numai dacă, pentru orice x și y din s, 
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dacă x = y, atunci ϕ x = ϕ y.

Asa încât, prin această „formulă” formal exprimă proprietatea fundamentală a unei funcții: 
dacă două intrări sunt egale, rezultatele lor trebuie să fie egale, ceea ce este o condiție necesară pen-
tru ca ϕ să fie considerată o funcție pe clasa s.

De fapt, domnul Peano descrie o funcție ϕ care operează pe o clasă s - o mulțime de entități - 
și care respectă proprietatea că, dacă x = y - două elemente din s sunt egale - atunci ϕ x = ϕ y. Adică, 
rezultatele aplicării lui ϕ pe x și y sunt egale. 

Iar, aceasta este o proprietate esențială a funcțiilor – adică a adică o regulilor prin care se 
transformă elementele dintr-o mulțime într-un rezultat - care trebuie să fie „bine definite” în sensul 
că „elementele identice” produc „rezultate identice”.

Cu alte cuvinte – spre exemplu - să presupunem că:

Clasa s este mulțimea numerelor reale pozitive, adică s= {x x>0}.∈ ∣ℝ  

Simbolul ϕ reprezintă funcția „pătratul unui număr”, adică ϕx= x2. 

Acum, verificăm dacă ϕ - „funcția ridicare la pătrat” - satisface condițiile propuse de către 
domnul Peano pentru a fi un „pre-simbol al unei funcții” în clasa s:

Condiția 1: ϕx produce o entitate nouă. 

Dacă x s, de exemplu x= 2, atunci ϕx= ϕ(2)= 2∈ 2= 4, care este o entitate - un număr real. 
Pentru orice x s, ϕx= x∈ 2 este bine definit și produce o valoare - o altă entitate.

Condiția 2: Identitatea este definită între entitățile ϕx. 

Rezultatele funcției ϕx sunt numere reale, iar identitatea între numere reale este bine definită  
(de exemplu, 4= 4, 9= 9 și desigur, tot așa mai departe).

Condiția 3: Dacă x= y în s, atunci ϕx= ϕy. 

Să considerăm x, y s astfel încât x= y. Spre exemplu, fie x= 3 și y= 3.∈  
Atunci: 

ϕx= ϕ(3)= 32= 9, 

ϕy= ϕ(3)= 32= 9. 

Cum x= y, rezultă ϕx= ϕy, adică 9= 9. 

Iar, cum așa ceva reprezintă un adevăr pentru orice x, y s (dacă x= y, atunci x∈ 2= y2, deci 
ϕx= ϕy) funcția ϕx= x2 satisface toate condițiile peanoiene, deci este un „pre-simbol al unei funcții” 
în clasa s - numerele reale pozitive.

Și putem nota ϕ F′s, adică ϕ este o funcție definită pe s.∈
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Sau – spre contra-exemplu - să presupunem că ϕ nu este o funcție bine definită. 
De exemplu, dacă ϕx ar returna „ultima cifră a lui x” într-un mod ambiguu ori aleatoriu –  

adică, pur și simplu: fără a specifica nici o „regulă” - atunci ar putea încălca proprietatea x= y→ϕx=  
ϕy. 

Dar, în cazul „funcției ridicare la pătrat”, această proprietate este respectată.

„Verum si, cum sit x quodlibet ens classis s, scriptura xϕ novum indicet ens, et, 
ex, x = y deducitur xϕ = yϕ, tunc dicimus ϕ esse functionis postsignum in classi s et scribemus ϕ ϵ 
s’F.”

Notația originală Interpretare contemporană

s ϵ K . Ɔ:: ϕ s’F . =  x, y ∴ ϵ s . x = y : Ɔx, y . xϕ 
= yϕ

Dacă s aparține lui K, atunci: 
Pentru orice x, y din s, dacă x = y, atunci xϕ = yϕ

Dar dacă, pentru orice entitate x din clasa s, expresia xϕ produce o entitate nouă și dacă din 
x = y rezultă că xϕ = yϕ, atunci spunem că ϕ este un simbol postfix al unei funcții pe clasa s, notat ϕ  

 s’F.∈
Dacă s este o clasă, atunci ϕ este un simbol postfix al unei funcții pe s dacă și numai dacă,  

pentru orice x și y din s, dacă x este egal cu y, atunci xϕ este egal cu yϕ.
De fapt, în fragmentul anterior (cu „ϕ F' s”) domnul Peano a definit o funcție folosind nota-

ția prefix (ϕx, unde ϕ este scris înaintea argumentului x). 
Doar că, acum propune notația postfix (xϕ, unde ϕ este scris după x). 
Desigur, proprietățile acesteia rămân aceleași (produce o entitate nouă și respectă egalitatea) 

doar că, acest soi de formalism, prin schimbarea notației reflectă flexibilitatea sistemului logic astfel 
definit. 

Spre exemplu, fie s mulțimea numerelor reale și ϕ operația „ridicare la pătrat” în notație 
postfix, astfel încât xϕ = x². 

Dacă x = y = 3, atunci xϕ = 3² = 9 și yϕ = 3² = 9, deci xϕ = yϕ. 

Iar, asa ceva confirmă că, ϕ (“pătratul”) este o funcție pe s, notată ϕ  s’F.∈  
Doar că, notația postfix (xϕ) este mai puțin obișnuită în matematica modernă, unde se prefe-

ră notația prefix (f(x)). 
Totuși – cel puțin aparent – domnul Peano o propune pentru a arăta că ordinea simbolurilor 

nu afectează proprietățile esențiale ale unei funcții. 

De fapt:

„Exempla. Sit a numerus; tunc a + est functionis praesignum in numerorum classe, et + a est  
functionis postsignum; quicumque enim est numerus x, formulae a + x et x + a no os indicant nu∧ -
meros, et ex x = y deducitur a + x = a + y, et x + a = y + a. 

Itaque:”

Considerând chiar exemplul propus de către domnia sa:
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Fie a un număr; atunci „a +” este un pre-simbol al unei funcții în clasa numerelor, iar „+ a” 
este un post-simbol al unei funcții; căci, oricare ar fi numărul x, expresiile „a + x” și „x + a” indică  
numere noi; și din x = y se deduce că a + x = a + y, precum și x + a = y + a. 

Prin urmare:

Dacă a este un număr natural, atunci „a +” aparține pre-simbolurilor funcțiilor definite pe 
clasa numerelor naturale.

Dacă a este un număr natural, atunci „+ a” aparține post-simbolurilor funcțiilor definite pe 
clasa numerelor naturale.

Cu alte cuvinte, domnul Peano în acest paragraf descrie proprietățile operației de adunare ca 
o funcție în contextul numerelor naturale (clasa „N”). Și folosește termenii „pre-simbol” și „post-
simbol” pentru a indica poziția numărului „a” în raport cu operația de adunare:

Pre-simbolul (a +): Înseamnă funcția care ia un număr x și returnează „a + x” (adică adună a 
la x).

Post-simbolul (+ a): Înseamnă funcția care ia un număr x și returnează „x + a” (adică adună  
x la a).

Ori formal:

Notația originală Interpretare contemporană

a ϵ N . Ɔ: a + . ϵ . F' N Dacă a este un număr natural, atunci operația „a 
+” este un pre-simbol al unei funcții definite pe 
clasa numerelor naturale.

Adică, pentru orice număr natural a, funcția care 
adună a la orice alt număr natural x (adică „a + 
x”) este o funcție validă pe mulțimea numerelor 
naturale, întrucât produce un rezultat bine definit 
și respectă proprietatea că, dacă x = y, atunci a + 
x = a + y.

a ϵ N . Ɔ: + a . ϵ . N’ F Dacă a este un număr natural, atunci operația „+ 
a” este un post-simbol al unei funcții definite pe 
clasa numerelor naturale.

Adică, funcția care adună orice număr natural x 
la a („x + a”) este, de asemenea, o funcție validă 
pe mulțimea numerelor naturale, întrucât produce 
un  rezultat  bine  definit  și  respectă  proprietatea 
că, dacă x = y, atunci x + a = y + a.

Ori - spre exemplu „exemplului”:

Să considerăm un număr natural - de exemplu 3 - și mulțimea numerelor naturale (1, 2, 3 ...).

Pentru „a +” (pre-simbol):
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Operația „3 +” înseamnă să adunăm 3 la orice număr din mulțimea numerelor naturale:

Dacă luăm numărul 2, rezultatul este 3 + 2 = 5.
Dacă luăm numărul 4, rezultatul este 3 + 4 = 7.
Dacă două numere sunt egale, de exemplu 2 și 2, atunci 3 + 2 = 5 și 3 + 2 = 5, deci rezultate-

le sunt egale. 
Așa încât, operația „3 +” este o funcție validă.

Pentru „+ a” (post-simbol):

Operația „+ 3” înseamnă să adunăm orice număr la 3:

Dacă luăm numărul 2, rezultatul este 2 + 3 = 5.
Dacă luăm numărul 4, rezultatul este 4 + 3 = 7.
Dacă două numere sunt egale, de exemplu 2 și 2, atunci 2 + 3 = 5 și 2 + 3 = 5, deci rezultate-

le sunt egale. 
Așa încât, operația „+ 3” este o funcție validă.

„Sit ϕ functionis praesignum in classe s. Tunc [ϕ]y classem significat iis x constitutam, quae 
conditioni ϕx = y satisfaciunt; scilicet:”

Fie ϕ o funcție definită pe clasa s. Atunci [ϕ]y denotă clasa formată din acele x care satisfac  
condiția ϕ(x) = y; mai precis:

Notația originală Interpretare contemporană

Def. s ϵ K . ϕ ϵ F' s : Ɔ: [ϕ]y . = . [x ϵ] (ϕx = y) Dacă s  K și ϕ  F's, atunci: [ϕ]y = {x ∈ ∈ ∈ 
s | ϕ(x) = y}.

“Classis [ϕ]y vel unum vel plura, vel etiam nullum individuum continere potest.
Erit:”

Clasa [ϕ]y poate conține fie un singur element, fie mai multe elemente, fie niciun element.
Mai precis:

Notația originală Interpretare contemporană

s ϵ K . ϕ ϵ F' s : Ɔ: y = ϕ x . = . x ϵ [ϕ]y Dacă s  K și ϕ  F's, atunci: y = ϕ(x) este∈ ∈  
echivalent cu x  [ϕ]y.∈

În limbaj matematic contemporan, această afirmație este echivalentă cu definirea imaginii 
inverse a unei funcții. Clasa [ϕ]y este mulțimea {x  s∈  | ϕ(x) = y}, iar relația y = ϕ(x) ↔ x  [ϕ]y∈  
descrie exact această proprietate. Textul subliniază că această clasă poate fi vidă, unică sau multiplă, 
în funcție de natura funcției ϕ.

“Si vero ϕy uno tantum constat individuo, erit y = ϕx . = . x = [ϕ]y
Sit ϕ functions postsignum; similiter ponimus:”
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Dacă clasa [ϕ]y conține exact un singur element, atunci y = ϕ(x) este echivalent cu x = [ϕ]y.
Fie ϕ o funcție inversă; în mod similar, stabilim:

Notația originală Interpretare contemporană

s ϵ K . ϕ ϵ s' F : Ɔ ∴ y [ϕ] = [x ϵ] (xϕ = y) Dacă s  K și ϕ  F's, atunci: [ϕ]y = {x  s∈ ∈ ∈  | xϕ 
= y}.

Pentru prima parte, dacă [ϕ]y = {x} (un „singleton”, o mulțime care conține exact un singur 
element, in acest caz, conține un singur x astfel încât ϕ(x) = y) atunci y = ϕ(x) ↔ x este unicul ele-
ment din [ϕ]y. 

Pentru a doua parte, definiția cu funcția inversă se traduce astfel: [ϕ]y = {x  s∈  | ϕ ¹(x) = y},⁻  
unde ϕ ¹ este funcția inversă a lui ϕ. Aceasta implică o simetrie între funcția directă și cea inversă,⁻  
iar notația „xϕ = y” este echivalentă cu ϕ ¹(x) = y.⁻

„Signum [ ] dicitur inversionis signum, eiusque usus nonullos in logica iam exposuimus. 
nam si α est propositio indeterminatum continens x, atque A est classis individuis x composita quae 
conditioni α satisfaciunt, erit x ϵ a . = α, tunc a = [xϵ] α, ut in V, i.”

Simbolul [ ] se numește simbolul inversiunii, iar utilizarea sa logică, a fost deja explicată. 

De exemplu, dacă α este o afirmație care conține variabila x, iar A este mulțimea formată din 
toate elementele x care îndeplinesc afirmația α, atunci x aparține mulțimii A dacă și numai dacă α 
este adevărat. Astfel, A este mulțimea [x] α, conform secțiunii V, i.

Doar că, de fapt, în acest paragraf domnul Peano promovează o funcția notată cu ϕ, care 
poate fi aplicată în două moduri:

Ca „pre-simbol” (scris ϕx) unde ϕ este aplicat înainte de elementul x – precum spre exem-
plu, ca „dublarea lui x” sau ca „adunarea unui număr la x” ori oricum altfel.

Ca „post-simbol” (scris xϕ) unde ϕ este aplicat după elementul x – precum spre exemplu „x 
plus un număr”.

„Inversiunea” ([ϕ]y sau y [ϕ]) înseamnă construirea tuturor elementelor x care, prin aplica-
rea lui ϕ, dau rezultatul y. Iar, dacă această mulțime are un singur element, inversiunea devine o  
„funcție inversă”.

Cu alte cuvinte - folosind un „limbaj actualizat” - dacă se știe că f(ceva) = x, ce modalitate 
ar putea exista pentru a se determina „ce era acel «ceva» știindu-se că «f(ceva) = x»”.

Sau – ceva mai formal, dar cu alte cuvinte – ar trebui să se găsească g(f(x))= x.

Deci, revenind:

Spre exemplu pentru „pre-simbol” – (ϕx).

Să presupunem că ϕ este „înmulțirea cu 3” aplicată înainte de x (adică ϕx = 3 înmulțit cu x). 
Așa încât, așa ceva reprezintă o funcție pre-simbol, pentru că ϕ (înmulțirea cu 3) este scrisă 

înainte de x. 
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Iar, dacă s-ar dori să se găsească mulțimea [ϕ]6, adică toate numerele x din numerele natura-
le pentru care ϕ aplicat pe x este 6:

ϕx = 3 × x = 6.

3 × 2 = 6, deci x = 2
Și niciun alt număr natural x nu satisface condiția (întrucât, 3 × 1 = 3, 3 × 3 = 9).

Deci, mulțimea [ϕ]6 conține doar un singur număr – ori „element” – adică: 2.

Și întrucât [ϕ]6 are un singur element, funcția ϕ are o „funcție inversă” pentru y = 6, care 
este reprezentată de „împărțirea la 3” (6 ÷ 3 = 2).

Sau spre - alt - exemplu pentru post-simbol (xϕ).

Să presupunem că, de această dată, ϕ este „înmulțirea cu 3” dar, aplicată după x (adică xϕ = 
x înmulțit cu 3). 

Așa încât, aceasta este o funcție post-simbol, pentru că ϕ – adică înmulțirea cu 3 - este scrisă 
după x. 

Iar, dacă s-ar dori să se găsească mulțimea 6 [ϕ], adică toate numerele x din numerele natu-
rale pentru care x combinat cu ϕ este 6:

xϕ = x × 3 = 6.

2 × 3 = 6, deci x = 2.

Și – tot - niciun alt număr natural x nu satisface condiția (întrucât, 1 × 3 = 3, 3 × 3 = 9).

Deci, mulțimea 6 [ϕ] conține doar 2.

Și întrucât 6 [ϕ] are un singur element, funcția ϕ are o funcție inversă pentru y = 6, care este  
- tot - „împărțirea la 3” (6 ÷ 3 = 2).

Sau – spre un cu totul și cu totul alt exemplu, în care se folosește o „funcție necomutativă”,  
precum ar fi „concatenarea șirurilor de caractere” - pentru a evidenția mai expresiv distincția. 

Să considerăm mulțimea șirurilor de caractere formate din litere (precum spre exemplu, „a”, 
„b”, „c” ...).

Pentru „pre-simbol” – (ϕx):

Să presupunem că ϕ este „adăugarea literei «p» înaintea șirului x” (adică ϕx = „p” concate-
nat cu x). Spre exemplu, dacă x este „a”, atunci ϕx = „pa”. 

Iar, aceasta este o „funcție pre-simbol”, pentru că ϕ (adăugarea „p”) este aplicată înainte de 
x. 

Iar, dacă s-ar dori să se găsească mulțimea [ϕ]„pa”:
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ϕx = „p” concatenat cu x = „pa”.

Iar, x trebuie să fie „a”, întrucât „p” adăugat la „a” = „pa”.

Și – desigur - niciun alt șir x nu satisface condiția (întrucât, „p” adăugat la „b” = „pb” ... p” 
adăugat la „c” = „pc” ... și așa mai departe).

Deci, mulțimea [ϕ]„pa” conține doar „a”.
Întrucât [ϕ]„pa” are un singur element, funcția ϕ are o funcție inversă pentru y = „pa”, care 

este „eliminarea literei ‘p’ de la început” (adică, pur și simplu: „a”, întrucât în acest caz, „pa” → 
„a”).

Pentru „post-simbol” - (xϕ):

Să presupunem că ϕ este „adăugarea literei «p» dar, de această dată, după șirul x” (adică xϕ  
= x concatenat cu „p”). Spre exemplu, dacă x este „a”, atunci xϕ = „ap”. 

Iar, aceasta este o funcție post-simbol, pentru că ϕ este aplicată după x. 

Iar, dacă s-ar dori să se găsească mulțimea „ap” [ϕ]:

xϕ = x concatenat cu „p” = „ap”.

Iar, x trebuie să fie „a”, întrucât „a” adăugat la „p” = „ap”.

Și – desigur – nici un alt șir x nu satisface condiția (spre exemplu: „b” adăugat la „p” = „bp” 
... „c” adăugat la „p” = „cp” ).

Deci, mulțimea „ap” [ϕ] conține doar „a”.
Întrucât „ap” [ϕ] are un singur element, funcția ϕ are o funcție inversă pentru y = „ap”, care 

este „eliminarea literei ‘p’ de la sfârșit” (adică, pur și simplu: „a”, întrucât în acest caz, „ap” → „a”).

Și atunci:

Pentru pre-simbol, [ϕ]„pa” = {„a”}, există o funcție inversă (eliminarea „p” de la început).

Pentru post-simbol, „ap” [ϕ] = {„a”}, există o funcție inversă (eliminarea „p” de la sfârșit).

Doar că, ignorând „pre” și „post”-simbolurile, să presupunem un alt caz.

Re-folosind un „limbaj actualizat”, să presupunem că:

f(x) = 1 unde x ar putea fi absolut orice „număr natural”, deci f(1)= 1, f(2)= 1, f(3)= 1 ... și 
așa mai departe.

Atunci – în acest caz – nu s-ar mai putea „construi” nici un soi de „funcție inversă”, așa în-
cât – pur și simplu – plecându-se de la „1”, să se ajungă la „x”. 
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Ori – re-iterând: 

Dacă se știe că f(absolut orice număr natural) = 1, ce modalitate ar putea exista pentru a se  
„«determina» care anume era acel «absolut orice număr natural» știindu-se că «f(absolut orice nu-
măr natural) = 1»”.

Și mai mult chiar, domnul Peano sugerează că simbolul [ ] se aplică și în afara funcțiilor. 

De exemplu, dacă α este afirmația „x este par”, mulțimea [x] „x este par” conține toate nu-
merele pare (2, 4, 6 ...).

Cu alte cuvinte:

Dacă printr-o „propoziție prin care se afirmă ceva despre altceva ... α(x)” se poate construi 
„mulțimea A”, atunci și din mulțimea A se poate reconstrui „propoziția ... α(x)”.

Deci – în acest caz – dacă se afirmă, pur și simplu, că: „x este par”, atunci acel „x” putând fi  
reprezentat de „orice număr par”, în mod obligatoriu ar putea fi reprezentat de „absolut orice număr  
par”, precum 2, 4, 6 ... și așa mai departe.

Doar că, știindu-se că, x ar putea fi reprezentat de „orice număr par”, s-ar putea „construi” o 
„propoziție” – „o afirmație” sau pur și simplu: „tot «o funcție care ...» ori «o regulă prin care ... »  
sau «o procedură prin care ...»” – prin care să se „clameze”, cum anume ar fi putut fi construită acea 
„mulțime de numere pare”.

Deși, dacă – spre ultim exemplu – s-ar clama, pur și simplu că: „x este π” - desigur - s-ar pu -
tea „construi” o „propoziție” – „o afirmație” sau „orice altceva”, prin care ...” – prin care să se „cla -
meze”, cum anume ar fi putut fi construită această „mulțime cu un singur element”.

Și anume – în cea mai trivială euclidiană perspectivă – afirmându-se că: „x” ar fi „re-con-
struit” prin: „lungimea oricărui cerc împărțită la raza acestuia”.

Doar că, în acest moment s-ar pune problema: 

Din moment ce valoarea lui π este reprezentată de un număr transcendent, atunci:

„π are o valoare unică?”

Și dacă nu o are, atunci nu s-ar putea construi o infinitate de „π”-uri cu valori absolut diferi-
te?

Cu alte ultime cuvinte: 

Este π o constantă absolută? Sau depinde de contextul în care e „construită”?

Și  mai  mult  chiar,  exact  aceeași  problemă s-ar  presupune că ar  apărea în  cazul  absolut  
tuturor numerelor transcendentale – așa precum abia am sugerat.

Oricum, revenind: 
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„Sit α formula indeterminate continens x, sitque ϕ functionis praesignum, quodx, sitque ϕ 
functionis praesignum, quod litterae x praepositum, formulam α gignat; scilicet sit α = ϕ x; tunc erit  
ϕ= α[x], et si x' est novum ens, erit ϕx' = α[x]x', scilicet, si α est formula indeterminatum continens  
x. Tunc α[x]x' significat id quod obtinetur si in α, loco x, x’ ponatur.

Similiter, sit α formula indeterminate continens x, sitque ϕ functionis postsignum, ut xϕ = α;  
deducitur ϕ = [x]α; tunc, si x' est novum ens, erit x'ϕ = x' [x]α, scilicet x' [x]α rursum indicat id quod 
obtinetur si in α, loco x, x’ legatur, ut in V, 4.”

Fie α o formulă nedeterminată care conține x și fie ϕ simbolul unei funcții care, plasat înain-
tea literei x, generează formula α; adică, fie α= ϕx. 

Atunci, ϕ= α[x], iar dacă x′ este o nouă entitate, atunci ϕx′= α[x]x′. 

Cu alte cuvinte, dacă α este o formulă nedeterminată care conține x, atunci α[x]x′ semnifică  
ceea ce se obține dacă, în α, în locul lui x, se pune x′.

În mod similar, fie α o formulă nedeterminată care conține x și fie ϕ simbolul unei funcții  
plasat după x, astfel încât xϕ= α. 

Se deduce că ϕ= [x]α. 
Atunci, dacă x′ este o nouă entitate, va fi x′ϕ= x′[x]α. Cu alte cuvinte, x′[x]α indică din nou 

ceea ce se obține dacă, în α, în locul lui x, se citește x′, conform secțiunii V, 4.”

Unde, printr-o „formula indeterminată” s-ar putea înțelege: 

„O expresie matematică care conține o variabilă x” – precum, spre exemplu, x+1, x2. 

Iar – tot spre exemplu - dacă α= x+1, atunci ϕx= x+1, iar ϕ reprezintă funcția „adună 1”. 
Astfel, ϕ= α[x] înseamnă că ϕ este funcția care, aplicată la x, dă x+1. 

Iar, în cazul „post-fixat”, dacă xϕ= x+1, atunci ϕ este operația „adună 1”, iar x′ϕ înseamnă x′
+1. 

Deci:

Dacă α este o expresie cu variabila x, iar ϕ este o funcție care, aplicată lui x, produce α (adi-
că α= ϕx) atunci ϕ este funcția definită de α. 

Dacă s-ar înlocui x cu x′, s-ar obține ϕx′= α cu x′ în locul lui x. 
Și la fel, dacă ϕ este o funcție notată după x (adică xϕ= α) atunci ϕ este funcția dată de α, iar  

pentru x′, x′ϕ înseamnă α cu x′ în locul lui x. 

„Alios quoque usus in logica signum [] habere potest, quos bre iter esponimus, quum ipsis∧  
non utamur. 

Sint a et b duae classes; tunc [a∩]b sive b[∩a] classes indicat x, quae conditioni b = a ∩ x,  
sive b = x ∩ a satisfaciunt. Si b in a non continetur, nulla classis huic conditioni satifacit; si b in a 
continetur, signum b[∩a] omnes indicat classes quae b continent atque in b  −a continentur.∪

In arithmetica, sint a, b numeri; tunc [b + a] sive [a+]b numerum indicat x, qui conditioni b 
= x + a, sive b = a + x satisfacit, nempe b − a. 
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Similiter erit b[×a] = [a×]b = b/a. Et in analysi hoc signum usu enire potest; itaque:”∧

Semul [] poate avea și alte utilizări logice, pe care le vom expune pe scurt, deoarece nu le 
folosim aici. 

Fie a și b două clase – mulțimi .

Atunci [a∩]b sau b[∩a] indică mulțimile x care satisfac condiția b= a∩x, sau b= x∩a. 

Dacă b nu este conținut în a, nicio mulțime nu satisface această condiție.

Iar, dacă b este conținut în a, notația b[∩a] indică toate mulțimile care conțin b și sunt conți -
nute în b -a.∪

Precum, spre exemplu: 

Dacă a= {1, 2, 3}, b= {1, 2}, atunci x trebuie să fie o mulțime care conține {1, 2} și să fie  
inclusă în {1, 2} {4, 5, …}. ∪

Iar, în acest caz, x ar putea fi mulțimea {1, 2} sau sau{1, 2, 4} ... și tot așa mai departe. 

În aritmetică, fie a, b numere; atunci [b+a] sau [a+]b indică numărul x care satisface condiția 
b= x+a, sau b= a+x, adică b − a.

În mod similar, b[×a]= [a×]b= b/a.
Precum, spre exemplu: 

În cazul în care „[b+a]= b−a”, notația [b+a] reprezintă numărul x astfel încât x+a= b, deci x= 
b−a. 

Și atunci, dacă b= 5, a= 3, atunci [5+3]= 5−3= 2. 
Iar, în cazul în care „b[×a]= b/a”, b[×a] reprezintă x astfel încât x a= b, deci x= b/a.⋅  
Și atunci, dacă b= 6, a= 2, atunci 6[×2]= 6/2= 3. 
În „analiză”, acest simbol poate fi utilizat; astfel:

Notația originală
Interpretare  contempo-
rană

Notația originală Interpretare  contempo-
rană

y = sin x . = . x ϵ [sin] y  echivalent cu  y=  sinx 
este echivalent cu 
x [sin]y∈

(loco x = arc sin y). în loc de x= arcsiny

dF(x)  =  f(x)dx  .  =  .  F 
(x) ϵ [d] f(x)dx

echivalent cu  dF(x)= 
f(x)dx  este echiva-
lent cu F(x) [d]f(x)dx∈

(loco F(x) = ∫f(x)dx) în loc de F(x)= ∫f(x)dx

Precum, spre exemplu:

În cazul în care „y= sinx → x [sin]y”, aceasta este o notație pentru funcția inversă.∈
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În loc de x= arcsiny, domnul Peano folosește x [sin]y pentru a indica faptul că x este va∈ -
loarea care, aplicată funcției sinus, produce y.

Iar, în cazul în care „dF(x)= f(x)dx→F(x) [d]f(x)dx”, domnia sa definește integrala nedefi∈ -
nită. În loc de F(x)= ∫f(x)dx, notează F(x) [d]f(x)dx, indicând că F(x) este o funcție a cărei deriva∈ -
tă este f(x)dx. 

Așa încât, domnul Peano propune utilizarea notației „[]” ca o metodă de a exprima operații  
inverse sau relații funcționale în logică, aritmetică și analiză matematică.

Doar că, în reprezentări contemporane:

În logică, b[∩a] ar putea fi interpretată ca o mulțime soluție a unei ecuații în teoria mulțimi-
lor. 

În aritmetică, [b+a] este echivalent cu operația inversă a adunării, adică b−a. 
În analiză, [sin]y este echivalent cu arcsiny, iar [d]f(x)dx este echivalent cu: ∫f(x)dx. 

„Sit rursum ϕ functionis praesignum in classi s, sitque k classis in s contenta; tunc ϕk clas-
sem indicat omnibus ϕx compositam, ubi x sunt entia classis k; scilicet:”

Fie din nou ϕ simbolul unei funcții prefixate definite pe o clasă s și fie k o clasă conținută în  
s. Atunci ϕk indică o clasă formată din toate ϕx, unde x sunt entitățile (elementele) clasei k. 

Mai exact: 

Notația originală Interpretare contemporană

Def. s ϵ K . k ϵ K . k Ɔs . ϕ ϵ F' s : Ɔ . ϕ k = [yϵ] 
(k . [ϕ]y : − = )∧

Dacă s K, k K, k s și ϕ F′s (unde F′s∈ ∈ ⊆ ∈  
reprezintă mulțimea funcțiilor definite pe s) 
atunci: ϕ(k)={y x k∣∃ ∈  astfel încât ϕ(x)=y}

Sive s ϵ K . k ϵ K . k Ɔs . ϕ ϵ F' s : Ɔ . ϕ k = [yϵ] 
([x ϵ] : x ϵ k . [ϕ]x = y ... − = )∧

Dacă s K,  k K,  k s  și  ϕ F′s,  atunci:∈ ∈ ⊆ ∈
ϕ(k)={y {x K x k∣ ∈ ∣ ∈  și ϕ(x)=y}≠∅)

Def. s ϵ K . k ϵ K . k Ɔs . ϕ ϵ s'F : Ɔ . k ϕ = [yϵ] 
(k . y [ϕ] : − = ∧

Dacă s K, k K, k s și ϕ s′F (unde s′F∈ ∈ ⊆ ∈  
reprezintă funcțiile post-fixate) atunci: 
kϕ={y x k∣∃ ∈  astfel încât xϕ=y}≠∅)

„Itaque, si ϕ ϵ F' s, tunc ϕ s classem indicat omnibus ϕ x constitutam, ubi x sint entia classis 
s. Erit:”

Astfel, dacă ϕ F′s, atunci ϕs indică clasa formată din toate ϕx, unde x sunt entitățile clasei∈  
s. Și atunci:

Notația originală Interpretare contemporană

1. s ϵ K . ϕ ϵ F' s . y ϵ ϕs : Ɔ: ϕ[ϕ]y = y Dacă s K, ϕ F′s și y ϕs, atunci: ϕ[ϕ]y=∈ ∈ ∈  
y 

2. s ϵ K . a, b ϵ K . a Ɔs . b Ɔs . ϕ ϵ F' s : Ɔ . 
ϕ(a  b) = (ϕa)  (ϕb)∪ ∪

Dacă s K, a, b K, a s, b s și ϕ F′s,∈ ∈ ⊆ ⊆ ∈  
atunci: ϕ(a b)= (ϕa) (ϕb) ∪ ∪

3. s ϵ K . ϕ ϵ F' s : Ɔ . ϕ = ∧ ∧ Dacă  s K,  ϕ F′s,  atunci:  ϕ∈ ∈ ∅=  ∅(unde 
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∅ reprezintă clasa vidă). 

4. s ϵ K . a, b ϵ K . b Ɔs . a Ɔb . ϕ ϵ F's : Ɔ . ϕa 
Ɔϕb

Dacă s K, a, b K, b s, a b și ϕ F′s,∈ ∈ ⊆ ⊆ ∈  
atunci: ϕa ϕb ⊆

5. s ϵ K . a, b ϵ K . a Ɔs . b Ɔs . ϕ ϵ F's : Ɔ . 
ϕ(ab) Ɔ(ϕa)(ϕb)

Dacă s K, a, b K, a s, b s și ϕ F′s,∈ ∈ ⊆ ⊆ ∈  
atunci: ϕ(ab) (ϕa)(ϕb) (unde ab reprezintă⊆  
intersecția a∩b).

Așa încât domnul Peano utilizând un limbaj formal pentru a descrie aplicarea funcțiilor la 
clase (mulțimi) și proprietățile rezultate promovează perspectiva unei funcții, ϕ care acționează asu-
pra elementelor unei – mulțimi de elemente - clase k, unde ϕk reprezintă „imaginea” clasei k prin 
funcția ϕ. 

Iar, notațiile F′s și s′F se referă la funcții prefixate (spre exemplu ϕx) și respectiv, post-fixate 
(spre exemplu xϕ). 

În timp ce, simbolurile K, reprezintă clasa claselor (mulțimea mulțimilor);∅ este mulțimea 
vidă, iar menționarea apartenenței la∅ indică o condiție care nu este validă. 

Și – în acest context – domnia sa definește:

„ϕk”: Dacă k este o mulțime conținută în s, iar ϕ este o funcție pe s, atunci ϕk= {ϕx x k}.∣ ∈  
Așa precum actualmente – adică - s-ar reprezenta imaginea mulțimii k prin funcția ϕ. 

Iar, notația „s ϵ K . k ϵ K . k Ɔs . ϕ ϵ F' s : Ɔ . ϕ k = [y ϵ] ([x ϵ] : x ϵ k . [ϕ]x = y ... − = )”∧  
definește mulțimea y-urilor astfel încât există un y k pentru care ϕx= y.∈  

Așa precum actualmente s-ar accepta că: ϕk= {y  x k, ϕx= y}∣∃ ∈

Funcții post-fixate „(kϕ)”: Similar, dar cu o notație diferită (post-fixată) care este mai puțin 
comună - actualmente. 

Cu proprietățile: 

1. „ϕ[ϕ]y= y”: sugerând, că ϕ este o funcție care, aplicată la un element din imaginea sa, re-
turnează același element și astfel indicând o proprietate de idempotență sau o funcție bijectivă pe 
imaginea sa.

Iar, o funcție bijectivă asociază fiecărui element din domeniu un element distinct din imagi-
nea sa, iar imaginea sa coincide exact cu codomeniul - adică „acoperă” complet mulțimea-țintă fără 
să lase „nimic neatins”.

Precum spre exemplu:

O „funcție injectivă” (dar nu surjectivă) ar fi o funcție care printr-o anumită „regulă de aso-
ciere a elementelor din «celălalt domeniu»” ar face ca:

f: {1, 2, 3} → {1, 2, 3, 4, 5}

f(1) = 2
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f(2) = 4
f(3) = 5

Unde {1, 2, 3} ar reprezenta domeniul, {1, 2, 3, 4, 5} ar reprezenta codomeniul iar {2, 4, 
5}ar reprezenta „imaginea”.

Și ar fi „injectivă”, întrucât la „elemente distincte” ar asocia „alte elemente distincte”.
Și nu ar fi „surjectivă”, întrucât elementele 1 și 3 din „codomeniu” nu sunt cu nimic „asocia-

te”

Iar:

O „funcție surjectivă” (dar nu injectivă) ar fi o funcție care printr-o anumită „regulă de aso-
ciere a elementelor din «celălalt domeniu»” ar face ca:

g: {1, 2, 3, 4} → {1, 2, 3}

g(1) = 1
g(2) = 2
g(3) = 2
g(4) = 3

Unde {1, 2, 3, 4} ar reprezenta domeniul, {1, 2, 3} ar reprezenta codomeniul iar {1, 2, 3}ar  
reprezenta „imaginea”, întrucât, deși elementul 2 se repetă, deja era menționat.

Și ar fi „surjectivă” întrucât toate elementele din codomeniu sunt „atinse” cel puțin o dată.
Și nu ar fi injectivă, întrucât g(2) e identic cu g(3) și ambele sunt reprezentate de către ele -

mentul 2 – din codomeniu.

Și – în cele din urmă:
O „funcție bijectivă” (adică atât injectivă cât și surjectivă) ar fi o funcție care printr-o anumi-

tă „regulă de asociere a elementelor din «celălalt domeniu»” ar face ca:

h: {1, 2, 3} → {4, 5, 6}

h(1) = 5
h(2) = 4
h(3) = 6

Unde {1, 2, 3} ar reprezenta domeniul, {4, 5, 6} ar reprezenta codomeniul iar {4, 5, 6}ar re -
prezenta „imaginea”.

Și ar fi „injectivă” pentru că unor elemente distincte din domeniu ar asocia elemente distinc-
te din codomeniu.

Și – în același timp – ar fi și „surjectivă” pentru că – pur și simplu - tuturor elementelor din 
codomeniu le-ar fi „asociate” elemente din „domeniu”.

Oricum – revenind:
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2. „ϕ(a b)= (ϕa) (ϕb)”: sugerând că, funcția ϕ păstrează reuniunea mulțimilor, o proprie∪ ∪ -
tate importantă în teoria mulțimilor.

3. „ϕ = ”: sugerând că, imaginea mulțimii vide prin ϕ este mulțimea vidă.∧

4. a b→ϕa ϕb: sugerând că, funcția ϕ este monotonă - păstrează „incluziunea”.⊆ ⊆

5. ϕ(a∩b) (ϕa)∩(ϕb): sugerând că, imaginea intersecției prin ϕ este inclusă în intersecția⊆  
imaginilor – deși, de fapt egalitatea nu este garantată decât dacă ϕ este injectivă.

De fapt, precum spre exemplu:

Fie s= {1, 2, 3}, k= {1, 2} și ϕx= x+1. 

Și atunci: 

ϕk= {ϕ1, ϕ2}= {2, 3}. 

Iar dacă, a= {1}, b= {2}, atunci:

 a b= {1, 2}∪

 ϕ(a b)= ϕ{1, 2}= {2, 3}. ∪

(ϕa) (ϕb)= {2} {3}= {2, 3}∪ ∪

Confirmând proprietatea:

ϕ(a b)= (ϕa) (ϕb). ∪ ∪
 

Ori – cu alte cuvinte:

Fie ϕ o funcție definită pe o mulțime s și fie k s. ⊆
Atunci ϕk este mulțimea formată din ϕx pentru toate x k. ∈

Formal: ϕk= {y  x k, ϕx= y}. ∣∃ ∈

Iar, pentru funcții post-fixate, kϕ are o definiție similară. 

Și – în acest context – o astfel de funcție are următoarele proprietăți:

ϕ aplicată la imaginea sa returnează același element: ϕ(ϕy)= y. 
ϕ păstrează reuniunea: ϕ(a b)= (ϕa) (ϕb). ∪ ∪
ϕ aplicată mulțimii vide dă mulțimea vidă: ϕ = . ∅ ∅
Dacă a b, atunci ϕa ϕb. ⊆ ⊆
Imaginea intersecției este inclusă în intersecția imaginilor: ϕ(a∩b) (ϕa)∩(ϕb).⊆
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„Sit a quaedam classis; tunc a ∩ K sive K ∩a, sive K a, classes omnes indicat formae a ∩ x,  
sive x ∩ a, xa, ubi x est classis quacumque; scilicet K a indicat classes quae in a continentur. For-
mula x ϵ K a idem significat quod x ϵ K . x Ɔ a. 

Hac conventione quandoque utimur; ita K N significat numerorum classem.

Similiter, si a est classis, K a indicat classes quae a continent.∪  
Sit a numerus; tunc a + N, sive N + a, numeros indicat numero a maiores; a × N, sive N × a, 

sive N a indicat multiplices numeri a; aN indicat potestas numeri a; N2 N3 ... indicat numeros qua-
dratos, vel numeros cubos ...

Functional signorum aequalitatem, productum, potestas, ita definire licet:”

Fie a o anumită clasă – mulțime. 
Atunci a∩K ori K∩a sau Ka, indică toate clasele de forma a∩x, sau x∩a, sau xa, unde x este  

o clasă oarecare. 
Cu alte cuvinte, Ka indică clasele care sunt conținute în a. 
Formula x Ka înseamnă același lucru ca x K x a. Iar, această convenție o folosim∈ ∈ ∧ ⊆  

uneori; astfel, KN reprezintă clasa numerelor.

În mod similar, dacă a este o clasă, K a indică clasele care conțin a.∪  
Dacă a este un număr, atunci a+N, sau N+a, indică numerele mai mari decât a; a×N, sau 

N×a, sau Na, indică multipli ai numărului a; aN indică puterile numărului a; N2, N3 ... indică numere-
le pătrate, respectiv numerele cubice ...

Egalitatea, produsul și puterile semnelor funcționale pot fi definite astfel:

Notația originală Interpretare contemporană

Def.  s ϵ K . ϕ, ψ ϵ F' s : Ɔ ∴ ϕ = ψ : = : x ϵ s . 
Ɔ . ϕx = ψx

Dacă s K, ϕ, ψ F′s (unde F′s reprezintă∈ ∈  
mulțimea funcțiilor prefixate definite pe s) 
atunci: ϕ= ψ:=  ∀ x s, ϕx= ψx∈

Def.  s ϵ K . ϕ ϵ F' s . ψ ϵ F'ϕs . x ϵ s : Ɔ . ψϕx = 
ψ(ϕx)

Dacă  s K,  ϕ F′s,  ψ F′(ϕs)  și  x s,∈ ∈ ∈ ∈  
atunci:
ψϕx= ψ(ϕx)

„Itaque, in definitionis hypothesi, erit ψϕ novum functionis praesignum; idque productum 
signorum ψ et ϕ vocatur.

Similiterque, si ϕ, ψ sunt functionis postsigna. haec valet propositio:”

Astfel, în ipoteza definiției, ψϕ este un nou simbol funcțional prefixat, numit produsul – 
compoziția - semnelor ψ și ϕ.

În mod similar, dacă ϕ și ψ sunt simboluri funcționale post-fixate, această propoziție este va-
labilă.

Notația originală Interpretare contemporană

s ϵ K . ϕ ϵ F' s . ϕs Ɔs : Ɔ: ϕϕs Ɔs . ϕϕϕs Ɔs. etc. Dacă  s K,  ϕ F′s  și  ϕs s,  atunci:  ϕϕs s,∈ ∈ ⊆ ⊆  
ϕϕϕs s și așa mai departe.⊆
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„Funcitones ϕϕ, ϕϕϕ ... iteraiae vocantur, et communiter signis ϕ2, ϕ3 ... indicantur, ut opera-
tionis ϕ potestates. 

Si vero ϕ est functionis postsignum, ha faciliori notatione, absque ambiguitate, 
uti licet:”

Funcțiile ϕϕ, ϕϕϕ ... se numesc „funcții iterate” și sunt notate în mod obișnuit cu ϕ2, ϕ3 ... ca 
puteri ale operației ϕ.

Dacă, însă, ϕ este un simbol funcțional post-fixat, se poate folosi o notație mai simplă, fără 
ambiguitate:

Notația originală Interpretare contemporană

Def. s ϵ K . ϕ ϵ s’F . sϕ Ɔs : Ɔ: ϕ1 = ϕ . ϕ2 = ϕϕ . 
ϕ3 = ϕϕϕ. etc. 

Dacă  s K,  ϕ s′F  și  sϕ s,  atunci:∈ ∈ ⊆
ϕ1= ϕ, ϕ2= ϕϕ, ϕ3= ϕϕϕ și așa mai departe

Așa încât, domnul Peano continuă să dezvolte un sistem formal pentru logica matematică, 
teoria mulțimilor și aritmetica, definind operații pe clase – mulțimi - și funcții, precum și iterarea  
funcțiilor, folosind notații precum Ka, ϕϕ și ϕn, unde simbolurile K, F′s și s′F reprezintă, respectiv,  
clasa claselor (mulțimea mulțimilor) funcțiile prefixate pe s și funcțiile post-fixate pe s. 

Deci:

Ka: Reprezintă mulțimea tuturor submulțimilor lui a, adică {x x a}. De exemplu, dacă a=∣ ⊆  
{1, 2}, atunci Ka= { , {1}, {2}, {1, 2}}. ∅

x Ka: Echivalent cu x K x a, adică x este o mulțime conținută în a.∈ ∈ ∧ ⊆  

KN: Reprezintă clasa numerelor naturale - sau o clasă similară, în funcție de contextul siste-
mului lui Peano. 

K a: Reprezintă mulțimile care conțin a, adică {x a x}. ∪ ∣ ⊆
Numere: 

a+N: Reprezintă numerele mai mari decât a, adică {a+n n N}, unde N este mulțimea nu∣ ∈ -
merelor naturale. 

a×N: Reprezintă multipli lui a, adică {a n n N}. ⋅ ∣ ∈

aN: Reprezintă puterile lui a, adică {an n N}. ∣ ∈

n2, n3: Reprezintă numerele pătrate ({n2 n N}) și, respectiv, cubice ({n∣ ∈ 3 n N}). ∣ ∈

 Egalitatea funcțiilor: ϕ= ψ înseamnă că ϕx= ψx pentru orice x s – precum în contempora∈ -
neitate s-ar defini egalitatea funcțiilor

Compoziția funcțiilor: ψϕx= ψ(ϕx) definește compunerea funcțiilor, unde ϕ se aplică mai în-
tâi, apoi ψ. 
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Spre exemplu, dacă ϕx= x+1 și ψx= x2, atunci ψϕx= ψ(x+1)= (x+1)2. 

Iterarea funcțiilor: Dacă ϕs s, atunci ϕ poate fi aplicată repetat, rezultând ϕ2= ϕϕ, ϕ3= ϕϕϕ,⊆  
etc. De exemplu, dacă ϕx= x+1, atunci ϕ2x= (x+1)+1= x+2. 

Pentru funcții post-fixate (xϕ) iterarea este notată similar: ϕ2= ϕϕ și așa mai departe. 

Precum, spre exemplu:

Fie s= {1, 2, 3}, ϕx= x+1 (definită astfel încât ϕs s, de exemplu, prin restricție).⊆  
Atunci: 
ϕ1= 2, ϕ2= 3, ϕ3= 4 poate fi definită doar pe submulțimi ale lui s. 
ϕs= {ϕ1, ϕ2, ϕ3}= {2, 3, 4}. 
ϕ2x= ϕ(ϕx) de exemplu, ϕ21= ϕ2= 3. 

Pentru a= {1, 2}, Ka= { , {1}, {2}, {1, 2}}. ∅

Deși, în accepții contemporane:

Ka este echivalent cu P(a) mulțimea părților lui a. 
ϕϕ reprezintă compunerea funcțiilor, notată astăzi ca ϕ ϕ. ∘
ϕn reprezintă aplicarea de N ori a funcției ϕ, o notație standard în matematică modernă. 

Ori – cu alte cuvinte:

Fie a o mulțime. 
Atunci Ka reprezintă toate submulțimile lui a, adică {x x a}. ∣ ⊆
De exemplu, KN este mulțimea numerelor naturale. 
K a reprezintă mulțimile care conțin a. ∪

Pentru un număr a:
a+N: numerele mai mari decât a. 
a×N: multipli lui a. 
aN: puterile lui a. 
n2, n3: numerele pătrate, cubice, etc. 

Egalitatea funcțiilor ϕ= ψ înseamnă că ϕx= ψx pentru orice x din domeniul s. 
Compoziția funcțiilor este ψϕx= ψ(ϕx). 
Dacă ϕs s, funcția ϕ poate fi aplicată repetat, rezultând ϕ2, ϕ3 și așa mai departe, numite⊆  

funcții iterate. 
Pentru funcții post-fixate, ϕ1= ϕ, ϕ2= ϕϕ și așa mai departe.

„In definitionis hypothesi, si M, N ϵ N, erit ϕ (M + n) = (ϕm)(ϕn); (ϕm)n = ϕ(mn)

Si hac definitione in arithmetica utimur, haec in enimus. Numerum qui sequitur numerum∧  
a signo faciliori a+ indicare possumus; tunc a + 1, a + 2 ... et, si b est numerus, a + b, sensum habent  
a+, a + + ... quod a definitione in §1 patet.
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Propositionem 6 in §1 scribere possumus N+ ƆN. Si a, b, Ɔ sunt numeri, tunc a : +b . Ɔ sig-
nificat a + bc, et a : ×b . c significat abc. 

Multi aliis proprietatibus gaudent functionem signa, praesertim si conditioni satisfaciunt: ϕx 
= ϕy . Ɔ . x = y. 

Functionis  signum quod huic conditioni  satisfacit  vocatur  a  clarrissimo Dedekind simile 
(„ahnliche Abbildung”). 

Sed his exponendis locus deest.”

În ipoteza definiției, dacă m, n N, atunci: ϕ(m+n)= (ϕm)(ϕn) și (ϕm)n= ϕ(mn)∈

Iar, dacă folosim această definiție în aritmetică, obținem următoarele.

Numărul care urmează numărului a poate fi notat mai simplu cu a+; astfel, a+1, a+2 ... și da -
că b este un număr, a+b, au sensul clar din definiția dată în §1.

Propoziția 6 din §1 poate fi scrisă ca N+ N. Dacă a, b, c sunt numere, atunci a:+b c în⊆ ⋅ -
seamnă a+bc, iar a:×b c înseamnă abc.⋅

Multe alte proprietăți caracterizează simbolurile funcțiilor, în special dacă satisfac condiția:
ϕx= ϕy→x= y.

Un simbol funcțional care îndeplinește această condiție este numit, conform ilustrului Dede-
kind, ähnliche Abbildung - funcție similară sau injectivă. 

Dar, nu este loc aici pentru a detalia aceste proprietăți.” 
Așa încât:

În ceea ce – în continuare - privește proprietățile funcțiilor: 

Prin „ϕ(m+n)= (ϕm)(ϕn)” domnia sa sugerează că funcția ϕ transformă adunarea numerelor 
naturale într-o operație (notată aici ca „produs”) pe imaginea sa. 

Spre exemplu, dacă ϕ este o funcție care mapează numerele naturale într-o altă structură, 
această proprietate indică un soi de omomorfism. 

Prin „(ϕm)n= ϕ(mn)” domnia sa descrie o proprietate legată de exponențiere sau multiplica-
re repetată. 

Spre exemplu, dacă ϕ este o funcție care respectă structura multiplicativă, aplicarea lui ϕ la 
M de N ori echivalează cu aplicarea lui ϕ la produsul mn. 

În ceea ce privește notația succesorului: 

a+: reprezintă succesorul numărului a, adică a+1, domnia sa propunând această notație pen-
tru a simplifica scrierea numerelor consecutive: a+1, a+2 și așa mai departe. 

a+b: reprezintă adunarea standard
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a+, a++: reprezintă a+1, a+2 și așa mai departe
 

În ceea ce privește „propoziția 6”, adică „N+ N”: ⊆

Aici, N+ reprezintă mulțimea numerelor naturale obținute prin aplicarea succesorului (adică 
{n+1 n N}). Și este inclusă în N, ceea ce reflectă proprietatea că succesorul unui număr natural∣ ∈  
este tot un număr natural. 

 În ceea ce privește operațiile aritmetice: 

a:+b c: înseamnă a+bc, adică adunarea lui a cu produsul b c. ⋅ ⋅
Și este o notație care clarifică ordinea operațiilor. 

a:×b c: înseamnă abc, adică produsul numerelor a, b și c. ⋅

Și totodată domnia sa menționează funcțiile injective - „ähnliche Abbildung” – alături de 
proprietatea: 

Dacă ϕx= ϕy→x= y, atunci ϕ este o funcție injectivă. 

De fapt, este pur și simplu o „axiomă”, asumata prin definirea generică a oricărei „funcții in-
jective”.

Care reprezintă – la rândul său - o referință la conceptul de injectivitate – de altfel esențială  
în teoria mulțimilor și algebră, întrucât „garantează” că funcția nu asociază elemente distincte acelu-
iași „rezultat”.

Altfel spus, orice „funcție injectivă” asociază fiecărui element din domeniul său de definiție 
un singur și absolut distinct element, din imaginea sa.

Cu alte cuvinte - în acest context - o funcție injectivă respectă regula prin care s-ar presupu-
ne că „succesori diferiți provin de la predecesori diferiți”.

Adică dacă două numere naturale produc rezultate identice printr-o operație, atunci ele tre-
buie să fie același număr de la început

Sau – pur și simplu - în mulțimea numerelor naturale construite pas cu pas, o funcție injecti-
vă păstrează „identitatea” fiecărui număr.

Precum spre exemplu:

Dacă ϕx= x+1 pe N, atunci: ϕ(m+n)= (m+n)+1

Iar: (ϕm)(ϕn)= (m+1)(n+1). 

Doar că, aceasta nu satisface ϕ(m+n)= (ϕm)(ϕn) deci ϕ trebuie să fie o funcție specifică -  
spre exemplu, un omomorfism multiplicativ. 
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Pentru succesor, dacă a= 3, atunci a+= 4, a++= 5 și așa mai departe. 

Dacă ϕx= 2x, atunci ϕ(m+n)= 2(m+n)= 2m+2n, iar (ϕm)(ϕn)= (2m)(2n)= 4mn, ceea ce arată 
că proprietatea depinde de natura lui ϕ. 

Cu alte cuvinte:

Dacă m, n N, atunci o funcție ϕ satisface:∈
ϕ(M+n)= (ϕm)(ϕn) și (ϕm)n= ϕ(mn). 

În aritmetică, a+ înseamnă succesorul lui a, adică a+1, astfel încât a+1, a+2 ... și a+b sunt de-
finite conform §1. 

Propoziția N+ N afirmă că succesorii numerelor naturale sunt tot numere naturale.⊆

Pentru numere a, b, c:

a:+b c înseamnă a+bc. ⋅
a:×b c înseamnă abc. ⋅

Funcțiile care satisfac ϕx= ϕy→x= y sunt injective.

Precum spre ultim exemplu:

Să considerăm „funcția succesorului” oricărui număr „n”:

ϕ(n)= n+1

Aceasta este o funcție injectivă, întrucât:

Dacă ϕ(m)= ϕ(n) atunci m+1= n+1→m= n. 

Iar – tocmai – această „axiomată” proprietate este folosită în definirea succesorilor pentru a  
asigura că fiecare număr natural are un succesor unic și că N este o mulțime fără ... dubluri.

Și atunci – revenind:

„Declarationes. 

Defenitio, vel breviter Def. est propositio formam habens x = a, sive α Ɔ . x = a, ubi α est 
signorum aggregatus sensum habens notum; x est signum, vel signorum aggregatus significatione 
adhuc carnes; α vero est conditio sub qua definitio datur.

Theorema, (Theor. vel Th) est propositio quae demonstratur. 
Si theorema formam habet α Ɔ β, ubi α et β sunt propositiones, tunc α dicitur Hypothesis 

(Hyp. vel breviter Hp.) β vero Thesis (Thes. vel Ts.). 
Hyp. ac Ts. a Theorematis forma pendent; nam si loco α Ɔ β scribemus −β Ɔ −α, erit −β Hp,  

et −α Ts.; si vero scribemus α − β =  Hp. ac Ts. absunt.∧
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In quolibet § signum P quod quidam numerus sequatur, propositionem indicat eiusdem § 
Hoc numero signatam. logicae propositiones indicantur signo L et propositiones numero.

Formulae quae in una linea non continentur, in altera linea, nullo interposito signo, sequun-
tur.”

Declarații.

Definiție, sau pe scurt Def., este o propoziție care are forma x = a, sau α ⊃42 x = a, unde α 
este un grup de simboluri cu un sens cunoscut; x este un simbol sau un grup de simboluri a căror 
semnificație nu este încă stabilită; iar α reprezintă condiția sub care se face definiția.

Teoremă, (notată Theor. sau Th.) este o propoziție care se demonstrează. Dacă teorema are 
forma α  β, unde α și β sunt propoziții, atunci α se numește Ipoteză (Hyp. sau pe scurt Hp.) iar β⊃  
se numește Teză (Thes. sau Ts.). 

Ipoteza și teza depind de forma teoremei; de exemplu, dacă în loc de α  β scriem −β ⊃ ⊃ 
−α, atunci −β devine ipoteza, iar −α devine teza. 

Dacă, însă, scriem α − β = , ipoteza și teza lipsesc.∧

În orice paragraf (§) simbolul P urmat de un anumit număr indică o propoziție din același 
paragraf, marcată cu acel număr. 

Propozițiile logice sunt indicate prin simbolul L și prin propoziții numerotate.

Formulele care nu sunt cuprinse într-o singură linie continuă pe următoarea linie, fără a fi in-
serat vreun simbol între ele.

Deci:

„ARITHMETICES PRINCIPIA.

§1. De numeris et de additione.

Explicationes.

Signo N significat
ur

numerus (integer positvus).

>> 1 >> unitas.

>> a + 1 >> sequens a, sive a plus 1.

>> = >> est aequalis. Hoc ut novum signum Ɔonsiderandum est, etsi logicae 
signi figuram habeat.

42 Simbolul „ ” - în acest context – va reprezinta implicația materială sau condițională.⊃  
Și se citește „implică” sau „dacă ... atunci ...”
Precum spere exemplu: P  Q înseamnă „dacă P, atunci Q” ori cu mai multe cuvinte, „dacă ceea ce se afirmă ⊃

prin P este adevărat, atunci și ceea ce se afirmă prin Q este adevărat”.
Deși desigur, în teoria mulțimilor, poate reprezenta incluziunea inversă strictă, lipsită de egalitate, dar acum nu 

este cazul.
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Axiomata.

1. 1 ϵ N .

2. a ϵ N . Ɔ . a = a.

3. a, b, c ϵ N . Ɔ: a = b . = . b = a.

4. a, b ϵ N . Ɔ ∴ a = b . b = c : Ɔ . a = c. 

5. a = b . b ϵ N : Ɔ . a ϵ N .

6. a ϵ N . Ɔ . a + 1 ϵ N .

7. a, b ϵ N . Ɔ: a = b . = . a + 1 = b + 1.

8. a ϵ N . Ɔ . a + 1 - = 1.

9. k ϵ K ∴ 1 ϵ k ... x ϵ N . x ϵ k : Ɔx . x + 1 ϵ k :: Ɔ . N Ɔk.

Definitiones.”

10.  2 = 1 + 1; 3 = 2 + 1; 4 = 3 + 1; etc. 

Cu alte cuvinte:

PRINCIPIILE ARITMETICII

§1. Despre numere și adunare

Explicații.

Simbolul N semnifică număr (întreg pozitiv)

... 1 ... unitatea

... a+1 ... succesorul lui a
sau a plus 1

... = ... este egal
Acest  simbol  trebuie 
considerat ca un simbol 
nou, deși are forma unui 
simbol logic.

Axiome

Notația originală Notația contemporană Limbaj natural

1. 1 ϵ N . 1  N ∈ 1 este un număr natural.

2. a ϵ N . Ɔ . a = a. a  N  a = a∈ ⊃ „Orice  lucru  este  egal  cu  el  în-
suși”:

Dacă  a  este  un  număr  natural, 
atunci a este egal cu el însuși. 
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3. a, b, c ϵ N . Ɔ: a = b . = . b = 
a.

a, b, c  N  (a = b) = (b =∈ ⊃  
a)

„Simetria egalității”:

Dacă a, b, c sunt numere naturale, 
atunci dacă a este egal cu b, b este 
egal cu a. 

4. a, b ϵ N . Ɔ ∴ a = b . b = c : 
Ɔ . a = c. 

a, b, c  N  ((a = b)  (b∈ ⊃ ∧  
= c)  a = c)⊃

„Tranzitivitatea egalității”:

Dacă a, b, c sunt numere naturale, 
atunci dacă a este egal cu b și b 
este egal cu c, atunci a este egal 
cu c. 

5. a = b . b ϵ N : Ɔ . a ϵ N . (a = b)  (b  N)  a  N∧ ∈ ⊃ ∈ „Compatibilitatea  cu  apartenența 
la N”

Dacă a este egal cu b și b este un 
număr  natural,  atunci  a  este  un 
număr natural. 

6. a ϵ N . Ɔ . a + 1 ϵ N . a  N  a + 1  N∈ ⊃ ∈ Dacă  a  este  un  număr  natural, 
atunci succesorul lui a (adică a + 
1) este un număr natural.

7. a, b ϵ N . Ɔ: a = b . = . a + 1 
= b + 1.

a, b  N  (a = b) = (a + 1∈ ⊃  
= b + 1)

Dacă a și b sunt numere naturale, 
atunci a este egal cu b dacă și nu-
mai dacă succesorul lui a este egal 
cu succesorul lui b. 

8. a ϵ N . Ɔ . a + 1 - = 1. a  N  a + 1 ≠ 1∈ ⊃ Dacă  a  este  un  număr  natural, 
atunci  succesorul  lui  a  nu  este 
egal cu 1. 

9. k ϵ K ∴ 1 ϵ k ... x ϵ N . x ϵ 
k : Ɔx . x + 1 ϵ k :: Ɔ . N Ɔk.

k  K  (1  k  (∈ ⊃ ∈ ∧  ∀ x ∈ 
N, x  k  x + 1  k) ∈ ⊃ ∈ ⊃ 
N  k)⊆

Principiul inducției matematice

Orice mulțime k care conține 1 și 
este  închisă  în  raport  cu  funcția 
succesor  conține  toate  numerele 
naturale.

Ori:

Orice  mulțime  care  conține  1  și 
este  închisă  în  raport  cu  funcția 
succesor  (adică,  pentru orice  nu-
măr  care  este  conținut  în  acea 
multime  și  succesorul  său  tot  în 
aceasta este conținut) conține toa-
te numerele naturale.

Definiții.
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Notația originală Interpretare în limbaj natural

10.  2 = 1 + 1; 3 = 2 + 1; 4 = 3 + 1; etc. Numerele naturale sunt definite recursiv: 2 este 
succesorul lui 1, 3 este succesorul lui 2, 4 este 
succesorul lui 3 și așa mai departe.

Așa încât, în accepțiuni contemporane:

„N” reprezintă mulțimea numerelor naturale, numerele întregi pozitive, fără 0 (deși în inter-
pretările contemporane 0 este uneori inclus).

„ ” reprezintă – tot - simbolul de apartenență – altfel spus: „este element al”.∈
„ ” reprezintă – tot - implicația logică – altfel spus: „dacă ... atunci ...”⊃
„  ∀ ” reprezintă – tot – „orice”, precum spre exemplu: orice x care este un număr natural (x 

 N)”. ∈
„ ” reprezintă – tot – conjuncția logică, altfel spus „ȘI”∧
„≠” reprezintă inegalitatea.
„a + 1” reprezintă succesorul lui a – altfel spus: „următorul număr natural”.

„Axioma 9” reprezintă „principiul inducției matematice”, care „garantează” că orice proprie-
tate adevărată pentru 1 și păstrată de funcția succesor se aplică tuturor numerelor naturale.

Ori – cu alte cuvinte:

Axioma 1 stabilește că 1 este un număr natural.
Axiomele 2–5 definesc proprietățile egalității (reflexivitate, simetrie, tranzitivitate și compa-

tibilitate cu apartenența la N).
Prin axioma „6” se axiomează funcționalitatea funcției „succesor”.
Prin axioma 7 se axiomează faptul că, funcția „succesor” este injectivă.
Prin axioma 8 se garantează că 1 nu este succesorul niciunui număr natural, întrucât – așa 

precum abia am sugerat – mulțimea numerelor naturale nici în accepțiile peanoiene nu-l include pe 
„0”.

În timp ce, prin axioma 9 se asigură demonstrarea proprietăților generice ale absolut tuturor 
numerelor naturale.

Iar, prin definiție se prezintă numerele 2, 3, 4 și așa mai departe, ca succesori succesivi ai lui 
1, stabilind astfel o construcție recursivă a numerelor naturale.

Și în cele din urmă, simbolul K din axioma 9 reprezintă o clasă (sau mulțime) arbitrară, folo-
sită pentru a formaliza principiul inducției.

Oricum – revenind:

„Theoremata.”

Deci:

Teoreme.
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Notația originală Notația contemporană Limbaj natural

11. 2 ϵ N 2  N∈ Numărul 2 este un număr natural.

„Demonstratio:”

Deci:

Demonstrație:

Notația originală Interpretare contemporană

P1 . P1 . 1 ϵ N (1) P1: 1  N (Axioma 1: 1 este un număr na∈ -
tural).

1[a](P6). 
Ɔ:

1 ϵ N . Ɔ . 1 + 1 ϵ N (2) 1a: Din axioma 6 (a  N  a + 1  N)∈ ⊃ ∈  
înlocuind a cu 1, se obține: 1  N  1∈ ⊃  
+ 1  N ∈

Dacă 1 este  un număr natural,  atunci 
succesorul lui 1, adică 1 + 1, este un 
număr natural).

(1)(2). Ɔ: 1 + 1 ϵ N (3) (1)(2): Din (1) și (2) rezultă: 1 + 1  N∈  

Succesorul lui 1 este un număr natural.

P10 . Ɔ: 2 = 1 + 1 (4) P10: Din definiția 10, întrucât 2 este succe-
sorul lui 1, 2 = 1 + 1.

(4).(3).
(2, 1 + 1)
[a,  b]
(P5) : Ɔ:

(2, 1 + 1)[a, b](P5) : Ɔ: 2 ϵ N (Theor.) (4)(3) (2, 1 + 1)a, b: Folosind axioma 5 (a = b 
 b  N  a  N) cu a = 2 și b = 1∧ ∈ ⊃ ∈  

+ 1 și combinând (3) și (4) rezultă: 2 
 N (Teoremă).∈

„Nota. - Huius facillimae demonstrationis gradus omnes ecplicite scripsimus. 
Brevitatis causa ipsam ita scribemus:”

Altfel spus:

Notă: Am scris explicit toți pașii acestei demonstrații extrem de simple. 
Pentru concizie, demonstrația poate fi scrisă astfel:

Notația originală Notația contemporană reformulată în limbaj na-
tural

P1 . 1[a](P6) : Ɔ: 1 + 1 ϵ N .P10 .(2, 1 + 1)[a, b]
(P5) : Ɔ: Th.

P1 . 1a :  : 1 + 1  N . P10 . (2, 1 + 1) a, b :⊃ ∈  
 : Th.⊃

„vel:”

Sau și mai succint:
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P1 .P6 : Ɔ: 1 + 1 ϵ N .P10 .P5 : Ɔ: Th. P1 . P6 :  : 1 + 1  N . P10 . P5 :  : Th.⊃ ∈ ⊃

Notația originală Notația contemporană reformulată în limbaj 
natural

12. 3, 4 ... ϵ N . 3, 4 ...  N ∈

sau:

Pentru orice n ≥ 3, n  N∈

Adică, 3, 4 ... sunt elemente ale lui N

13. a, b, c, d ϵ N . a = b . b = c . c = d : Ɔ: a = d. Tranzitivitatea egalității:

Dacă a, b, c, d sunt numere naturale și a este 
egal cu b, b este egal cu c și c este egal cu d, 
atunci a este egal cu d.

a, b, c, d  N  a = b  b = c  c = d →∈ ∧ ∧ ∧  
a = d

Ceea ce reprezintă un soi de formalizare a 
tranzitivității egalității.

Dem. Hyp.P4 : Ɔ: a, c, d  ϵ N . a = c . c = 
d .P4 : Ɔ: Thes.

Din ipoteză și folosind proprietatea P4, re-
zultă că a, c, d sunt numere naturale și a este 
egal cu c, iar c este egal cu d. 

Aplicând din nou P4, se obține concluzia.

Ori:

Din ipoteză și P4 → a, c, d  N  a = c ∈ ∧ ∧ 
c = d

Aplicând P4 rezultă concluzia.

14.  a, b, c ϵ N . a = b . b = c . a - = c := .∧ Contradicție prin tranzitivitate:

Dacă a, b, c sunt numere naturale și a este 
egal cu b, b este egal cu c, dar a nu este egal 
cu c, atunci avem o contradicție.

a, b, c  N  a = b  b = c  a ≠ c → ∈ ∧ ∧ ∧ ⊥

Aceasta este o teoremă de tip „reductio ad 
absurdum”,  prin  care  se  demonstrează  că 
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ipoteza  conduce  la  contradicție,  deci  este 
imposibilă. 
În esență, confirmă că egalitatea este tranzi-
tivă și consistentă.

Dem. P4 . L39 : Ɔ . Theor. Din proprietatea P4 (tranzitivitatea egalită-
ții) și lema 39, rezultă o contradicție, deci 
teorema este validă.

Din P4 și L39 rezultă o contradicție.

15.  a, b, c ϵ N . a = b . b - = c : Ɔ . a - = c. Substituția în inegalitate

Dacă a, b, c sunt numere naturale și a este 
egal cu b, dar b nu este egal cu c, atunci a nu 
este egal cu c.

Sau:

Dacă două numere sunt egale, atunci au ace-
eași relație de inegalitate cu orice al treilea 
număr.

a, b, c  N  a = b  b ≠ c → a ≠ c∈ ∧ ∧

Aceasta este o consecință directă a substitu-
ției în egalitate. 

Dacă se știe că a = b, atunci se poate înlocui 
a cu b (sau invers) în orice expresie. 

Deci dacă b ≠ c, atunci și a ≠ c, pentru că a și 
b sunt același număr.

16.  a, b ϵ N . a + 1 = b + 1 : Ɔ . a = b. Injectivitatea funcției succesor:

Dacă a și b sunt numere naturale și succeso-
rii lor sunt egali (a + 1 = b + 1) atunci a și b 
sunt egale.

Sau mai simplu:

Dacă  două  numere  au  același  succesor, 
atunci numerele sunt egale.

a, b  N  a + 1 = b + 1 → a = b∈ ∧

Sau în notație peanoiană modernă, folosind 
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funcția succesor:

a, b  N  S(a) = S(b) → a = b∈ ∧

Aceasta este una din axiomele fundamentale 
Peano - funcția succesor este injectivă (unul-
la-unul). 

Cu alte cuvinte, în timp ce numere egale au 
succesori egali, numere diferite au succesori 
diferiți.

Spre exemplu:

Dacă, a=b=1 atunci S(a) = S(b) = S(1) = 2

Deci. Doar dacă S(a) = S(b), atunci a = b

Dar, dacă:

 a ≠ b atunci și S(a) ≠ S(b)

Spre exemplu:

Dacă, a=1 iar b=3 atunci S(a) = 2 iar S(b) = 
= 4, deci  a ≠ b.

Ori altfel spus: 

Dacă se obține același rezultat adăugând 1 la 
două numere, atunci numerele erau egale. 

Dar,  dacă  nu  se  obține  același  rezultat 
adăugând 1 la două numere, atunci numerele 
nu erau egale.

Iar, tocmai aceasta este o condiția esențială 
pentru  a  se  putea  garanta  că  numerele 
naturale formează o progresie unică și bine 
definită: 0, 1, 2, 3 ...

Doar  că,  domnia  sa  dedică  –  explicit  - 
următorul  paragraf  tocmai  cazului  în  care 
două numere nu sunt egale, pe care abia l-
am sugerat.

17.  a, b ϵ N . Ɔ: a - = b . = . a + 1 - = b + 1. Echivalența inegalității cu succesorii
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Pentru orice numere naturale a și b: a este 
diferit de b dacă și numai dacă succesorii lor 
sunt diferiți (a + 1 ≠ b + 1).

a, b  N → (a ≠ b ↔ a + 1 ≠ b + 1)∈  

Sau în notație peanoiană modernă, folosind 
funcția succesor:

a, b  N → (a ≠ b ↔ S(a) ≠ S(b))∈

Aceasta este conversa teoremei 16. Împreu-
nă, teoremele 16 și 17 stabilesc că funcția 
succesor  păstrează  și  reflectă  relațiile  de 
egalitate/inegalitate:

Teorema 16: Dacă succesorii sunt egali → 
numerele sunt egale
Teorema 17: Numerele sunt diferite ↔ suc-
cesorii sunt diferiți

Iar, așa ceva garantează că funcția succesor 
este bijectivă între N și N{0}, adică o cores-
pondență perfectă unul-la-unul.

Dem. P7 . L21 : Ɔ . Theor. Din P7 și L21 → Teorema.

„Definitio.”

Ori:

Definiție.

Notația originală Notația contemporană reformulată în limbaj 
natural

18.  a, b ϵ N . Ɔ . a + (b + 1) = (a + b) + 1 Proprietatea asociativă parțială a adunării

Pentru orice numere naturale a și  b: suma 
lui a cu succesorul lui b este egală cu succe-
sorul sumei a + b.
Sau:

Adăugarea  lui  1  la  al  doilea  termen  este 
echivalentă  cu adăugarea  lui  1  la  întreaga 
sumă.

 ∀ a, b  N : a + (b + 1) = (a + b) + 1∈
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Sau:

 ∀ a, b  N : a + S(b) = S(a + b)∈

Iar,  aceasta  este  o  definiție  recurentă  fun-
damentală a adunării în aritmetica Peano. 
Și  „stabilește  cum se  comportă”  adunarea 
când al doilea operand este un succesor.

Precum spre exemplu:

3 + (2 + 1) = 3 + 3 = 6
(3 + 2) + 1 = 5 + 1 = 6

De fapt, prin asa ceva se garantează că ordi-
nea  aplicării  succesorului  nu  afectează  re-
zultatul, ceea ce este esențial pentru consis-
tența definiției adunării în sistemul axioma-
tic peanoian.

„Nota. - Hanc definitionem ita legere oportet: si a et b sunt numeri, et (a+b) + 1 sensum ha-
bet (scilicet si a + b est numerus) sed a + (b + 1) nondum definitus est, Tunc a + (b + 1) significat  
numerum qui a + b sequitur.

Ab hac definitione, et a praecedentibus deducitur:”

Notă: Această definiție trebuie citită astfel: dacă a și b sunt numere naturale și (a + b) + 1 are  
sens (adică a + b este un număr natural) dar a + (b + 1) nu este încă definit, atunci a + (b + 1) repre -
zintă numărul care urmează lui a + b (adică succesorul lui a + b).

Din această definiție și din cele precedente se deduce:

Notația originală Notația contemporană reformulată în limbaj na-
tural

a ϵ N . Ɔ ∴ a + 2 = a + (1 + 1) = (a + 1) + 1 Dezvoltarea recurentă a adunării

Pentru orice număr natural a:
a plus 2 este egal cu a plus (1 plus 1) care este 
egal cu (a plus 1) plus 1 

a plus 3 este egal cu a plus (2 plus 1) care este 
egal cu (a plus 2) plus 1

Și așa mai departe pentru orice număr natural.

 ∀ a  N :∈
 a + 2 = a + (1 + 1) = (a + 1) + 1

a ϵ N . Ɔ ∴ a + 3 = a + (2 + 1) = (a + 2) + 1, etc. 
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 a + 3 = a + (2 + 1) = (a + 2) + 1
 ...

  ∀ n  N : a + (n + 1) = (a + n) + 1∈

Sau în notația cu funcția succesor:
 ∀ a  N :∈

 a + S(S(0)) = a + S(1) = S(a + 1)
 a + S(S(S(0))) = a + S(2) = S(a + 2)
 ...

Aceasta demonstrează cum teorema 18 se aplică 
recursiv, pentru a defini adunarea cu orice număr 
natural:

2 = 1 + 1 (definiția lui 2)
3 = 2 + 1 (definiția lui 3)
... și asa mai departe.

Și prin aplicarea repetată a teoremei 18, putem 
calcula a + N pentru orice n  N prin aplicări∈  
successive ale operației succesor.

Precum spre exemplu:

5 + 3 = 5 + (2 + 1) = (5 + 2) + 1 = (5 + (1 + 1)) + 
1 = ((5 + 1) + 1) + 1 = ((6) + 1) + 1 = (7) + 1 = 8

„Theoremata.”

Teoreme.

Notația originală Notația  contemporană  reformulată  în 
limbaj natural

19. a, b ϵ N . Ɔ . a + b ϵ N. Adunarea este „închisă” în N:

Pentru  orice  numere  naturale  a  și  b, 
suma lor a + b este tot un număr natu-
ral.

Dem. a ϵ N . P6 : Ɔ: a + 1 ϵ N : Ɔ: 1 ϵ [b ϵ] 
Ts.

(1) Demonstrația am re-interpretat-o in ac-
cepțiuni contemporane:

Cazul de bază: Pentru b = 1:

Din a  N și P6 (axioma succesorului)∈  
→ a + 1  N ∈

a ϵ N . Ɔ:: b ϵ N . b ϵ [b ϵ] Ts : Ɔ: a + b 
ϵ N . P6
Ts.

(2)

a ϵ N .(1).(2). Ɔ:: 1 ϵ [b ϵ] Ts ∴ b ϵ N . 
b ϵ [b ϵ] Ts : Ɔ: b + 1 ϵ [b ϵ] Ts  ([b∴  
ϵ] Ts )[k] P9 :: Ɔ: N [Ɔb ϵ] Ts . (L50)

(3)
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:: Ɔ: b ϵ N . ƆTs. Pasul inductiv: Presupunem a + b  N∈  
și demonstrăm a + (b + 1)  N:∈

Din ipoteza inductivă: a + b  N∈  

Din P6: (a + b) + 1  N ∈

Din teorema 18: a + (b + 1) = (a + b) + 
1 

Prin substituție: a + (b + 1)  N∈  
Concluzie: Din  principiul  inducției 
(P9) →  b  N : a + b  N∀ ∈ ∈

(3). (L42) : Ɔ: a, b ϵ N . Ɔ . Thesis.  (Theor.)

20. Def. a + b + c = (a + b) + c . Ordinea  operațiilor  pentru  adunarea 
multiplă:

Prin „convenție”, expresia a + b + c se 
interpretează ca (a + b) + c,  adică se 
efectuează  mai  întâi  operația  a  +  b, 
apoi se adaugă c la rezultat.

a + b + c := (a + b) + c

Aceasta  este  o  convenție  de  notație 
care  stabilește  asociativitatea  pentru 
adunările multiple. 

Iar, în lipsa parantezelor, operațiile se 
efectuează de la stânga la dreapta.

Precum spre exemplu:

5 + 3 + 2 înseamnă (5 + 3) + 2 = 8 + 2 
= 10
nu înseamnă 5 + (3 + 2) = 5 + 5 = 10

Și deși în acest caz, rezultatul este ace-
lași  (datorită  asociativității  adunării) 
totuși „convenția” este importantă pen-
tru:

a. Consistența notației

b. Ordinea de calcul în algoritmi

c. Extinderea la operații non-asociative
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De fapt, aceasta este o definiție pur no-
tațională prin care se stabilește cum să 
citim și să interpretăm expresiile mate-
matice. Si nicidecum nu sugerează po-
sibile noi proprietăți ale adunării.

21. a, b, c ϵ N . Ɔ . a + b + c ϵ N. Rezultatul  adunarii  cu  trei  termeni 
„rămâne” în N:

Pentru orice numere naturale a, b și c, 
suma lor a + b + c este tot un număr 
natural.

 ∀ a, b, c  N : a + b + c  N∈ ∈

Sau mai explicit, folosind definiția 20:

 ∀ a, b, c  N : (a + b) + c  N∈ ∈

Aceasta este – de fapt - o extensie di-
rectă a teoremei 19 care demonstrează 
că  închiderea  adunării  se  menține  și 
pentru sume in care sunt implicați trei 
termeni.

Și deși domnia sa nu demonstrează asa 
ceva, totuși s-ar putea accepta că:

Din a, b  N și teorema 19 → a + b ∈ ∈ 
N
Din (a + b)  N, c  N și teorema 19∈ ∈  
→ (a + b) + c  N∈
Din definiția 20: a + b + c = (a + b) + c
Prin substituție: a + b + c  N∈

Precum, spre exemplu:

3, 5, 7  N∈
3 + 5 + 7 = (3 + 5) + 7 = 8 + 7 = 15 ∈ 
N 

Iar, prin așa ceva se confirmă stabilita-
tea  structurala  a  multimii  numerelor 
naturale asupra careia se operează adu-
nări repetate.
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22. a, b, c ϵ N . Ɔ: a = b . = . a + c = b + c. Proprietatea de simplificare a adunării:

Pentru orice numere naturale a, b și c: 
a este egal cu b dacă și numai dacă a + 
c este egal cu b + c.

 ∀ a, b, c  N : (a = b ↔ a + c = b + c)∈

Aceasta este – de fapt - „legea simplifi-
cării pentru adunare”, prin care se poa-
te „elimina” același termen din ambele 
părți ale unei egalități.

Precum, spre exemplu:

Dacă 5 + 2 = 5 + 2, atunci 5 = 5

Dacă x + 2 = 5 + 2, atunci x = 5 

Dem. a, b ϵ N . P7 : Ɔ . 1 ϵ [c ϵ]Ts.
a, b ϵ N . Ɔ:: c ϵ N . c ϵ [c ϵ] Ts  Ɔ ∴ ∴ 
a = b . = . a + c = b + c:
a + c, b + c ϵ N : a + c = b + c . = . a + 
c + 1 = b + c + 1  Ɔ  a =∴ ∴  

(1) Demonstrația am re-interpretat-o in ac-
cepțiuni contemporane:

Demonstrație prin inducție după c:

Cazul de bază, c = 1:

Din a, b  N și P7 (proprietatea sub∈ -
stituției) → (a = b ↔ a + 1 = b + 1)

Pasul inductiv:

Ipoteza inductivă: a = b ↔ a + c = b + 
c
De demonstrat: a = b ↔ a + (c + 1) = b 
+ (c + 1)

Din teorema 19: a + c, b + c  N∈
Din ipoteza inductivă: a = b ↔ a + c = 
b + c
Din P7: a + c = b + c ↔ (a + c) + 1 = 
(b + c) + 1
Din teorema 18: a + (c + 1) = (a + c) + 
1 și b + (c + 1) = (b + c) + 1
Prin substituție: a = b ↔ a + (c + 1) = b 
+ (c + 1)

Concluzie: Din principiul inducției → 
 ∀ c  N : (a = b ↔ a + c = b + c)∈  

b . = . a + (c + 1) = b + (c + 1)  Ɔ ∴ ∴ 
(c + 1) ϵ [c ϵ]Ts.
a, b ϵ N .(1).(2) : Ɔ:: 1 ϵ [c ϵ] Ts  c ∴ ϵ 
[c ϵ] ϵ Ts . Ɔ . (c + 1) ϵ [c ϵ]

(2)

Ts :: Ɔ:: c ϵ N . Ɔ . Ts. (3)
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23. a, b, c ϵ N . Ɔ . a + (b + c) = a + b + c. Asociativitatea adunării:

Pentru orice numere naturale a, b și c: 
suma  lui  a  cu  (b  +  c)  este  egală  cu 
suma (a + b) + c.

Sau:

În adunarea a trei numere, nu contează 
cum se grupează termenii între paran-
teze.

 ∀ a, b, c  N : a + (b + c) = a + b + c∈

Iar, asa ceva reprezintă asociativitatea 
adunării,  una  dintre  proprietățile  fun-
damentale care permite să se scrie a + 
b + c fără paranteze, știind că rezultatul 
este același indiferent de ordinea calcu-
lelor.

Precum, spre exemplu:

2 + (3 + 4) = 2 + 7 = 9
(2 + 3) + 4 = 5 + 4 = 9 

Dem. a, b ϵ N . P18 . P20 : Ɔ . 1 ϵ [c ϵ] Ts.
a, b ϵ N . Ɔ  c ∴ ϵ N . c ϵ [c ϵ] Ts : Ɔ: a 
+ (b + c) = a + b + c . P7 
: Ɔ: a + (b + c) + 1 = a + b + c + 1 . 
P18

(1) Demonstrația am re-interpretat-o în ac-
cepțiuni contemporane:

Demonstrație prin inducție după c:
Cazul de bază, c = 1:

Din a, b  N, P18 și P20 → a + (b +∈  
1) = a + b + 1 

Pasul inductiv:

Ipoteza inductivă: a + (b + c) = a + b + 
c
De demonstrat: a + (b + (c + 1)) = a + 
b + (c + 1)

Din ipoteza inductivă: a + (b + c) = a + 
b + c
Din P7 (compatibilitatea cu +1): a + (b 
+ c) + 1 = (a + b + c) + 1

: Ɔ: a + (b + (c + 1)) = a + b + (c + 1) : 
Ɔ . c + 1 ϵ [c ϵ] Ts. 
(1)(2) (P9) . Ɔ . Theor.

(2)
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Din P18: a + ((b + c) + 1) = (a + (b + 
c)) + 1
Din P18: a + (b + (c + 1)) = a + ((b + c) 
+ 1)
Din definiția 20: (a + b + c) + 1 = a + b 
+ (c + 1)
Prin substituție: a + (b + (c + 1)) = a + 
b + (c + 1)

Concluzie: Din P9 (inducția) → teore-
ma

24. a ϵ N . Ɔ . 1 + a = a + 1. Comutativitatea adunării cu 1:

Pentru orice număr natural a: 1 plus a 
este egal cu a plus 1.

Sau:

Nu contează dacă se adună 1 la începu-
tul sau la sfârșitul unei expresii.

 ∀ a  N : 1 + a = a + 1∈

Iar, așa ceva reprezintă – de fapt - pri-
mul pas către comutativitatea completă 
a adunării: „a + b = b + a” 

Precum spre exemplu:

1 + 5 = 6 = 5 + 1 
1 + 37 = 38 = 37 + 1 

Dem. P2 . Ɔ . 1 ϵ [a ϵ] Ts.
a ϵ N . a ϵ [a ϵ] Ts

(1) Demonstrația am re-interpretat-o in ac-
cepțiuni contemporane:

Demonstrație prin inducție după a:

Cazul de bază, a = 1:

Din P2 (1  N) → 1 + 1 = 1 + 1 (trivi∈ -
al adevărat)

Pasul inductiv:

Ipoteza inductivă: 1 + a = a + 1
De demonstrat: 1 + (a + 1) = (a + 1) + 
1

: Ɔ: 1 + 1 = a + 1 : Ɔ: 1 + (a + 1) = (a + 
1) + 1 : Ɔ: (a + 1) ϵ [a ϵ]
Ts.

(2)

(1)(2). Ɔ . Theor.
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Din ipoteza inductivă: 1 + a = a + 1
Din P18 (asociativitatea parțială): 1 + 
(a + 1) = (1 + a) + 1
Din ipoteza inductivă: (1 + a) + 1 = (a 
+ 1) + 1
Prin substituție: 1 + (a + 1) = (a + 1) + 
1

Concluzie: Din principiul inducției re-
zultă teorema.

24’. a, b ϵ N . Ɔ . 1 + a + b = a + 1 + b. Deplasarea lui 1 în sume multiple:

Pentru  orice  numere  naturale  a  și  b: 
suma 1 + a + b este egală cu suma a + 
1 + b.

Sau:

Se poate deplasa numărul 1 în interio-
rul unei sume fără să se schimbe rezul-
tatul.

 ∀ a, b  N : 1 + a + b = a + 1 + b∈
Dem Hyp. P24 : Ɔ: 1 + a = a + 1 . P22 : Ɔ . 

Thesis
4 Din ipoteză și P24: 1 + a = a + 1

Din  P22  (compatibilitatea  cu  aduna-
rea): 1 + a + b = a + 1 + b 

Sau: 

Din ipoteză: a, b  N∈
Din P24: 1 + a = a + 1
Din P22 (compatibilitatea egalității cu 
+b):

Dacă 1 + a = a + 1, atunci (1 + a) + b = 
(a + 1) + b

Din definiția 20 (asociativitatea ...):

1 + a + b = (1 + a) + b
a + 1 + b = (a + 1) + b

Prin substituție: 1 + a + b = a + 1 + b 

25. a, b ϵ N . Ɔ . a + b = b + a. Legea comutativității adunării:
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Pentru orice numere naturale a și b: a 
plus b este egal cu b plus a.

Sau:

Ordinea termenilor în adunare nu con-
tează.

 ∀ a, b  N : a + b = b + a∈

Aceasta este una dintre cele mai impor-
tante teoreme ale aritmeticii – prin care 
se  demonstrează  că  adunarea  este  co-
mutativă.

Precum, spre exemplu:

3 + 7 = 10 = 7 + 3 
15 + 28 = 43 = 28 + 15 

Dem. a ϵ N . P24 : Ɔ: 1 ϵ [b ϵ] Ts. (1) Demonstrația am re-interpretat-o in ac-
cepțiuni contemporane:

Demonstrație prin inducție după b:

Cazul de bază, b = 1:

Din a  N și P24 → a + 1 = 1 + a∈  

Pasul inductiv:

Ipoteza inductivă: a + b = b + a
De demonstrat: a + (b + 1) = (b + 1) + a

Demonstrația pasului inductiv:

Din P7 și ipoteza inductivă: a + b = b + 
a → (a + b) + 1 = (b + a) + 1
Din P18: (a + b) + 1 = a + (b + 1)
Din P18: (b + a) + 1 = b + (a + 1)
Din P24: a + 1 = 1 + a
Prin substituție: b + (a + 1) = b + (1 + 
a)
Din P23 (asociativitatea): b + (1 + a) = 
(b + 1) + a
Combinând: a + (b + 1) = (b + 1) + a 

Concluzie:  Din principiul  inducției  → 

a ϵ N . Ɔ  b ∴ ϵ N . b ϵ [b ϵ] Ts : Ɔ: a + 
b = b + a . P7 
: Ɔ: (a+b)+1 = (b+a)+1 .(a+b)+1 = a+
(b+1).(b+a)+1 = 
1 + (b+a). 1 + (b+a) = (1 +b) +a .(1 +b) 
+a = (b+ 1) +a :
Ɔ: a + (b + 1) = (b + 1) + a : Ɔ: (b + 1) 
ϵ [b ϵ] Ts.

(2)

(1)(2). Ɔ . Theor.
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 ∀ a, b  N : a + b = b + a∈

26. a, b, c ϵ N . Ɔ: a = b . = . c + a = c + b. Simplificarea la stânga în adunare:

Pentru orice numere naturale a, b și c: 
a este egal cu b dacă și numai dacă c + 
a este egal cu c + b.

Sau:

Se poate adăuga același număr la stân-
ga ambelor părți ale unei egalități fără 
să schimbi validitatea acesteia.

Aceasta este – de fapt - versiunea stân-
gă a teoremei 22. Si împreună, P22 și 
P26  demonstrează  că  adunarea  este 
complet compatibilă cu relația de ega-
litate, așa încât se poate adăuga același 
termen pe oricare parte a unei egalități.

Precum, spre exemplu:

Dacă x = 5, atunci 3 + x = 3 + 5 = 8
Dacă 7 + y = 7 + 12,  atunci y = 12 
(prin simplificare)

Și deși domnia sa nu demonstrează asa 
ceva, totuși s-ar putea accepta că, con-
siderând teoremele anterioare:

Din P25 (comutativitatea): c + a = a + 
c și c + b = b + c
Din P22 (compatibilitatea la dreapta): a 
= b ↔ a + c = b + c
Prin substituție comutativă: a = b ↔ c 
+ a = c + b 

27. a, b, c ϵ N . Ɔ: a + b + c = a + c + b. „Interschimbarea”  termenilor  în  sume 
triple:

Pentru orice numere naturale a, b și c: 
suma a + b + c este egală cu suma a + c 
+ b.

Sau:
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În  suma  a  trei  termeni,  se  pot  in-
terschimba al doilea și al treilea termen 
fără să se schimbe rezultatul.

 ∀ a, b, c  N : a + b + c = a + c + b∈

Sau mai explicit, folosind definiția 20:

 ∀ a, b, c  N : (a + b) + c = (a + c) + b∈

Iar, prin așa ceva se demonstrează fle-
xibilitatea operațiilor în sume multiple. 
Și este o consecință directă a comutati-
vității și asociativității adunării.

Precum, spre exemplu:

2 + 3 + 5 = (2 + 3) + 5 = 5 + 5 = 10
2 + 5 + 3 = (2 + 5) + 3 = 7 + 3 = 10

De  fapt,  această  teoremă  este  primul 
pas spre demonstrarea faptului că ori-
care permutare a termenilor unei sume 
dă același  rezultat,  ceea ce reprezintă 
principiul  fundamental  al  adunării  ca 
operație comutativă pentru orice număr 
de termeni.

Și deși domnia sa nu demonstrează asa 
ceva, totuși s-ar putea accepta că, con-
siderând teoremele anterioare:

Din definiția 20: a + b + c = (a + b) + c 
și a + c + b = (a + c) + b
Din P25 (comutativitatea): b + c = c + 
b
Din P26 (compatibilitatea la stânga):

Dacă b + c = c + b, atunci a + (b + c) = 
a + (c + b)

Din P23 (asociativitatea):

a + (b + c) = (a + b) + c
a + (c + b) = (a + c) + b

Prin substituție: 
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(a + b) + c = a + b + c=(a + c) + b= a + 
c + b

28. a, b, c, d ϵ N . a = b . c = d : Ɔ . a + c = b + d. Adunarea egalităților:

Pentru orice numere naturale a, b, c și 
d: dacă a este egal cu b și c este egal cu 
d, atunci a + c este egal cu b + d.

Sau:

Se pot aduna egalitățile: dacă sunt două 
egalități separate, suma părților stângi 
este egală cu suma părților drepte.

 ∀ a, b, c, d  N : (a = b  c = d) → a∈ ∧  
+ c = b + d

Și reprezintă o proprietate fundamenta-
lă care permite combinarea egalităților 
prin adunare. 
Și este esențială pentru manipularile al-
gebrice și pentru rezolvarea sistemelor 
de ecuații.

Precum, spre exemplu:

Dacă x = 3 și y = 5, atunci x + y = 3 + 
5 = 8
Dacă a = 7 și b = 12, atunci a + b = 7 + 
12 = 19
Dacă 2x = 6 și 3y = 9, atunci 2x + 3y = 
6 + 9 = 15

Și mai mult chiar, este o teoremă fund-
mentală pentru:

Adunarea ecuațiilor în sisteme liniare
Manipularea algebraică complexă
Conservarea  egalității  în  transformări 
matematice.

Și deși domnia sa nu demonstrează așa 
ceva, totuși s-ar putea accepta că, con-
siderând teoremele anterioare:

Din ipoteză: a = b și c = d
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Din P22 (compatibilitatea la dreapta):

Dacă a = b, atunci a + c = b + c

Din P26 (compatibilitatea la stânga):

Dacă c = d, atunci b + c = b + d

Din tranzitivitatea egalității (P4):

a + c = b + c și b + c = b + d → a + c = 
b + d.

„§2. De substractione.

Explicationes.”

Signo − legitur minus.

>> < >> est minor.

>> > >> est maior.

Cu alte cuvinte:

§2. La scădere.

Explicații.

Simbolul „−” se citește „minus” Se specifică  faptul 
că simbolul „−” re-
prezintă  operația 
de scădere.

>> < >> „este mai mic” Se definește relația 
de  ordine  „<”  ca 
indicând  faptul  că 
un număr este mai 
mic decât altul.

>> > >> „este mai mare” În mod similar, re-
lația  „>”  indică 
faptul că un număr 
este  mai  mare  de-
cât altul.

„Definitiones.”

Definiții.
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Notația originală Interpretare contemporană

1 a, b ϵ N . Ɔ: b − a = N [x ϵ](x + a = b). Pentru orice a, b N, definim b−a ca fiind un nu∈ -
măr natural x N astfel încât x+a= b.∈  

De fapt – tocmai - aceasta este o definiție a ope-
rației de scădere în mulțimea numerelor naturale. 
Iar, scăderea b−a este valabilă doar dacă există 
un număr natural x care, adăugat la a, dă b. 

Spre exemplu,  dacă b= 5 și  a= 3,  atunci  b−a= 
5−3= 2, deoarece 2+3= 5. Dacă b<a, scăderea nu 
este definită în N, întrucât rezultatul nu ar fi un 
număr natural. 

2 a, b ϵ N . Ɔ: a < b . = . b − a - = .∧ Pentru orice a, b N, definim a<b ca fiind echi∈ -
valent cu faptul că b−a este definit (adică, există 
un număr natural nenul). 

Aici, relația „mai mic” (<) este definită în funcție 
de scădere. a < b înseamnă că b − a este un nu-
măr natural pozitiv (nenul). 

Spre exemplu, 3<5 deoarece 5−3= 2, care este un 
număr natural pozitiv.

3 a, b ϵ N . Ɔ: b > a . = . a < b. Pentru orice a, b N, definim b>a ca fiind echi∈ -
valent cu a<b. 

Aceasta este – de fapt - o definiție simetrică a re-
lației „mai mare”. 

Dacă a<b, atunci b>a. 

Este o proprietate reflexivă a ordinii, care confir-
mă  că  „mai  mare”  este  inversul  relației  „mai 
mic”

Notația originală Interpretare contemporană

a+b−c  =  (a+b)−c;  a−b+c  =  (a−b)+c;  a−b−c  = 
(a−b)−c . 

Adică:

a+b−c = (a+b)−c;
a−b+c = (a−b)+c;
a−b−c = (a−b)−c. 

Aceste egalități definesc asociativitatea operații-
lor de adunare și scădere și – totodată - specifică 
ordinea în care operațiile sunt efectuate: 
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Pentru a+b−c, mai întâi se calculează a+b, apoi 
se scade c. 
Pentru a−b+c, mai întâi se calculează a−b, apoi 
se adaugă c. 
Pentru a−b−c, mai întâi se calculează a−b, apoi 
se scade c. 

Așa încât,  aceste reguli  sunt similare cu acelea 
din aritmetica standard și clarifică faptul că ope-
rațiile de adunare și scădere nu sunt asociative în 
mod direct, ci trebuie efectuate în ordinea indica-
tă de paranteze. 

„Theoremata.”

Adică:

Teoreme.

Notația originală Notația  contemporană  reformulată  în 
limbaj natural

4. a, b, a' b' ϵ N . a = a' . b = b' : Ɔ: b − a = 
b' − a' .

Conservarea diferenței sub egalitate:

 ∀ a, b, a', b'  N: (a = a'  b = b') →∈ ∧  
(b - a = b' – a')

Dacă două perechi de numere naturale 
sunt egale element cu element, atunci 
diferențele dintre elementele din fieca-
re pereche sunt egale.

Aceasta este o proprietate fundamenta-
lă prin care se arată că operația de scă-
dere este bine definită - nu depinde de 
reprezentarea numerelor, ci doar de va-
lorile lor. 
Este  –  de  fapt  -  echivalentul  pentru 
scădere a proprietății că adunarea este 
bine definită.

Precum spre exemplu:

 Dacă a = 7, b = 12, a' = 7, b' = 12, 
atunci 12 - 7 = 5 și 12 - 7 = 5 

Dar, dacă a = 5, b = 9, dar a' = 6, b' = 9, 
atunci 9 - 5 = 4 ≠ 9 - 6 = 3 
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Așa încât,  această  proprietate  „garan-
tează” că ecuațiile de forma x + a = b 
au soluții unice.

Dem. Hyp . Ɔ: x + a = b . = . x + a' = b' : Ɔ . 
Thesis.

Dacă: a = a' și b = b'
Din definiția diferenței: b − a este „uni-
cul x”, astfel că x + a = b
Și tot așa: b' − a' este „unicul x” astfel 
că x + a' = b'
Și atunci, înlocuind a = a' și b = b' în a 
doua ecuație: x + a = b

Și considerând „unicitatea”: 
b − a = b' − a' 

5. a, b ϵ N . Ɔ: a < b . = . b − a ϵ N. Caracterizarea ordinii prin diferență:

 ∀ a, b  N: a < b ↔∈  (b - a)  N∈

Un număr natural  este mai mic decât 
altul dacă și  numai dacă diferența lor 
este un număr natural pozitiv.

Așa încât, se poate definii relația de or-
dine prin intermediul scăderii. 

Și în loc să se definească separat „<”, 
se poate defini existența unei diferențe 
pozitive. 

Așa încât, așa ceva „leagă” conceptul 
de „ordine” de cel de „operație aritme-
tică”.

Spre exemplu:
3 < 8 pentru că 8 - 3 = 5  N∈  

Doar că:
 7 ≮ 4 pentru că 4 - 7 = -3  N (nume∉ -
rele negative nu sunt în N) 

 Și: 6 ≮ 6 pentru că 6 - 6 = 0  N (zero∉  
nu  este  în  N,  în  „sistemul  –  clasic  - 
Peano”) 

Iar,  toate  acestea  permit  determinarea 
ordinii numerelor prin calculul diferen-
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ței, ceea ce reprezintă fundamentul ori-
carui algoritm de sortare.

Dem. a, b ϵ N : Ɔ  x, y ∴ ϵ b−a . Ɔx, y : x, y ϵ 
N . x+a = b . y+a = b .

(1) În primă instanță, s-ar putea presupune 
că, a < b și a, b N∈

Din definiția lui „<” : ∃ x N cu x + a∈  
= b
Dar, dată fiind definiția diferenței: b − 
a = x  N∈

Apoi s-ar putea presupune că:
b − a N∈

Atunci ∃ x N așa încât, x = b − a∈

Dar, din definiția diferenței: x + a = b

Iar, prin definiția lui „<”: a < b

Și atunci: b − a ϵ N.

§1 P22 : Ɔ: x = y.

a, b ϵ N . a < b . P2
. (1) : Ɔ  b − a - =  : x, y ∴ ∧ ϵ b − a . 
Ɔ . x = y : (N, b − a)[s, k]
(L56)  Ɔ  b − a ∴ ∴ ϵ N.

(2)

a, b ϵ N . b − a ϵ N . (L56) : Ɔ: b − a - 
=  : Ɔ: a < b.∧

(3)

(2)(3). Ɔ . Theor.

6. a, b ϵ N . a < b : Ɔ . b − a + a = b. Proprietatea fundamentală a scăderii:

 ∀ a, b  N: a < b → (b - a) + a = b∈

Dacă  a  este  mai  mic  decât  b,  atunci 
adunând a la diferența b - a se obține ... 
înapoi b.

Aceasta este proprietatea de „înapoie-
re” a scăderii - dacă se scade ceva și 
apoi se adună înapoi, se obține numă-
rul inițial. 
Este - de fapt - „inversul adunării” pen-
tru cazul când scăderea este posibilă.

Spre exemplu:
a = 3, b = 10: 10 - 3 = 7 și 7 + 3 = 10 

Oricum, verificarea corectitudinii ope-
rațiilor de scădere reprezintă o metoda 
fundamentală în aritmetică.

Dem. Hyp . P5 . P1 : Ɔ: b − a ϵ N .(b − a) ϵ 
[x ϵ](x + a = b) : Ɔ:
Thes.

Din premisă s-ar putea presupune că: a 
< b 
Și din teorema 5, că: b − a N∈
Din definiția diferenței: b − a este toc-
mai unicul x N cu x + a = b.∈
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Doar că, prin definiție: (b − a) + a = b
Deci: b − a + a = b.

7. a, b, c ϵ N . Ɔ : c = b − a . = . c + a = b. Echivalența definițiilor scăderii:

 ∀ a, b, c  N: c = b - a ↔ c + a = b∈

Un număr c este diferența dintre b și a 
dacă și numai dacă c plus a este egal cu 
b.

Așa încât, așa ceva oferă două modali-
tăți echivalente de a înțelege scăderea: 
fie  ca  operație  directă  (b  -  a),  fie  ca 
operația  inversă a  adunării  (ce număr 
adunat la a dă b?).

Precum, spre exemplu:

c = 8, a = 2, b = 10: 8 = 10 - 2 ↔ 8 + 2 
= 10
 
Sau: „Ce număr adunat la 15 dă 23?”

 23 - 15 = 8, verificare: 8 + 15 = 23 

Iar,  așa  ceva  permite  rezolvarea 
ecuațiilor  de forma „x + a  = b” prin 
transformare lor în forma „x = b - a”.

Dem. Hyp . §1 P22 . P6
: Ɔ: c = b − a . = . c + a = b − a + a . = . 
c + a = b.

Direct  din  definiția  diferenței,  b  −  a 
este definit ca unicul c N pentru care∈  
c + a = b (când există, desigur).

Deci, dacă „c = b - a” atunci „c + a = 
b”.

8. a, b ϵ N . Ɔ . a + b − a = b. Proprietatea de „anulare”:

 ∀ a, b  N: a + b - a = b∈

Dacă la un număr adunăm altul și apoi 
scădem primul, se obține al doilea nu-
măr.

Aceasta este o generalizare a proprietă-
ții  că operațiile de adunare și  scădere 
se anulează reciproc când sunt aplicate 
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în această ordine specifică.

Precum, spre exemplu:

a = 5, b = 3: 5 + 3 - 5 = 8 - 5 = 3 
 
 

Și  astfel  se  permite  simplificarea  ex-
presiilor algebrice și  manipularea for-
mulelor.

Dem. (a + b, b)[b, c] P7 . Ɔ . Theor. Se aplică teorema 7 cu c = b și suma a 
+ b în locul lui b 
Se verifică, că: b + a = a + b (prin co-
mutativitatea adunării) 
Asa încât, din teorema 7: 
b = (a + b) − a. 
Și atunci:
b = a + b – a. 

9. a, b, c ϵ N . a < b : Ɔ: c + (b − a) = c + 
b − a.

Asociativitatea adunării și a scăderii:

 ∀ a, b, c  N: a < b → c + (b - a) = c +∈  
b - a

Adunarea se distribuie asupra scăderii 
în anumite condiții.
Și astfel se extinde proprietatea distri-
butivă la scădere, dar doar când scăde-
rea este validă (a < b). 

Așa încât,  ordinea operațiilor poate fi 
reorganizată fără a afecta rezultatul.

Precum, spre exemplu:

 a = 2, b = 7, c = 5: 5 + (7 - 2) = 5 + 5 
= 10 și 5 + 7 - 2 = 12 - 2 = 10 
 
Și  astfel  și  prin  așa  ceva  se  permite 
simplificarea  calculelor  prin  reorgani-
zarea ordinii operațiilor.

Dem. Hyp . P6 : Ɔ: (b − a) + a = b : Ɔ: c + (b 
− a) + a = c + b.
P7 : Ɔ: Thesis.

Din ipoteză a < b
Din teorema 5: (b - a)  N ∈
Din teorema 6: (b - a) + a = b 
Se adună c la ambele părți: c + (b - a) + 
a = c + b 
Prin asociativitatea adunării: c + (b - a) 
+ a = (c + (b - a)) + a = c + b

95

https://esteticademersurilorinutile.com/
https://esteticademersurilorinutile.com/


                                    esteticademersurilorinutile.gmail.com
                                    esteticademersurilorinutile.com   

Și dacă scade a din ambele părți: 
c + (b - a) = c + b – a..

10. a, b, c ϵ N . a > b + c : Ɔ . a − (b + c) = 
a − b − c . 

Regula de scădere a unei sume.:

 ∀ a, b, c  N: a > b + c → a - (b + c) =∈  
a - b - c

Scăderea unei sume este egală cu scă-
derea succesivă a termenilor.

De fapt, aceasta este „regula de scădere 
a unei sume”, similară cu „- (x + y) = - 
x - y” din algebra contemporană.

Precum spre exemplu:

 a = 20, b = 5, c = 3: 20 - (5 + 3) = 20 - 
8 = 12 și 20 - 5 - 3 = 15 - 3 = 12 
 
 

Și deși domnia sa nu demonstrează ex-
plicit  așa  ceva,  s-ar  putea  –  totuși  – 
presupune că:

Dacă: a > b + c – din ipoteză
Din teorema 5: a - (b + c)  N∈  
Din teorema 6: (a - (b + c)) + (b + c) = 
a 
Prin asociativitatea adunării: (a - (b + 
c)) + b + c = a 
Scădem c: (a - (b + c)) + b = a - c 
Scădem b: a - (b + c) = a - c - b = a - b 
- c 
Prin comutativitatea scăderii: 
a - (b + c) = a - b - c 

11. a, b, c ϵ N . b > c . a > b − c : Ɔ . a − (b 
− c) = a + c − b

Proprietatea complexă a scăderii:

 ∀ a, b, c  N: (b > c  a > b - c) → a∈ ∧  
- (b - c) = a + c – b

În anumite condiții, scăderea unei dife-
rențe poate fi exprimată ca o combina-
ție de adunare și scădere a termenilor.

Precum, spre exemplu:
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a = 15, b = 10, c = 3: b > c (10 > 3)
a > b - c (15 > 7)
15 - (10 - 3) = 15 - 7 = 8 și 15 + 3 - 10 
= 18 - 10 = 8 

Și deși domnia sa nu oferă o demon-
strație, s-ar putea accepta totuși că:

Dacă, b > c și a > b - c – conform ipo-
tezei.

Tot din ipoteză și teorema 5: (b - c) ∈ 
N 
Respectiv: (a - (b - c))  N∈  
Din teorema 6: (a - (b - c)) + (b - c) = a 
Prin asociativitate: (a - (b - c)) + b - c = 
a 
Se adună c la ambele părți: (a - (b - c)) 
+ b – c + c = a + c 

Așa încât: a - (b - c) = a + c - b

12. a, b, a' b' ϵ N . a = a' . b = b' : Ɔ: a < b . 
= . a' < b' .

Conservarea ordinii în egalitate:

 ∀ a, b, a', b'  N: (a = a'  b = b') →∈ ∧  
(a < b ↔ a' < b')

Relația  de  ordine  se  conservă  pentru 
numere egale.

Și așa ceva „garantează” că relația „<” 
este  bine  definită  și  depinde  doar  de 
valorile numerelor, nu și de modul în 
care sunt reprezentate sau numite.

Precum, spre exemplu:
 
Dacă a = 5, b = 8, a' = 5, b' = 8, atunci 
5 < 8 ↔ 5 < 8
 Și în general: dacă x = y, atunci x < z 
dacă și numai dacă y < z 

Așa încât, așa ceva „asigură” că relații-
le nu depind de notație.

Dem. Hyp . Ɔ . b − a = b' − a' . Ɔ . b − a ϵ N 
= b' − a' ϵ N . Ɔ . Thes.

 1. Dacă presupunem că: a = a' și b = b' 
 2. Din teorema 4: a = a'  b = b' → (b∧  
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- a = b' - a') 
 3. Din teorema 5: a < b ↔ (b - a)  N∈  
și a' < b' ↔ (b' - a')  N ∈
 4. Din etapa a 2-a: b - a = b' - a' 
 5. Prin urmare: (b - a)  N ↔ (b' - a')∈  

 N ∈
 6. Din etapa a 3-a și a 5-a: a < b ↔ a' 
< b' 

13. a, b ϵ N . Ɔ . a < a + b. Monotonia adunării:

 ∀ a, b  N: a < a + b∈

Un număr natural este întotdeauna mai 
mic decât suma lui cu orice alt număr 
natural pozitiv.

Așa încât, adunarea unui număr pozitiv 
la alt număr, acestuia îi mărește - întot-
deauna - valoarea. 

Ceea  ce  reprezintă  o  proprietate  de 
strictă monotonie.

Precum, spre exemplu:
 5 < 5 + 3 = 8 
 Ori:
2 < 2 + 2 = 4

Dem. Hyp . P8 : Ɔ: a + b − a = b : Ɔ . a + b − 
a ϵ N . P5 : Ɔ:
Thesis.

1. Considerăm a, b  N arbitrare∈  
2. Din teorema 8: a + b - a = b 
3. Prin urmare: (a + b) - a = b 
4. Din teorema 5: a < a + b ↔ ((a + b) 
- a)  N ∈
5. Din etapa a 2-a: (a + b) - a = b 
6. Cum b  N, avem ((a + b) - a)  N∈ ∈  
7. Prin urmare: a < a + b 

14. a, b, c ϵ N . a < b . b < c : Ɔ . a < c . Tranzitivitatea relației de ordine:

 ∀ a, b, c  N: (a < b  b < c) → a < c∈ ∧

Așa încât, dacă a este mai mic decât b 
și b este mai mic decât c, atunci a este 
mai mic decât c.

Iar,  aceasta  este  proprietatea  fun-
damentală de tranzitivitate, care permi-
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te  „înlănțuirea”  inegalităților  și  face 
posibile demonstrațiile prin comparații 
succesive.

Precum, spre exemplu:

3 < 7 și 7 < 12, prin urmare 3 < 12 
1 < 5 și 5 < 10, prin urmare 1 < 10 
 

Și pur și simplu astfel se permite sorta-
rea oricăror elemente ale oricărei mul-
țimi, întrucât dacă se știe că a < b < c, 
se pot ordona direct: a, b, c.

Dem. Hyp . Ɔ: b − a ϵ N . c − b ϵ : Ɔ: (b − a) 
+ (c − b) ϵ N : Ɔ:
c − a ϵ N : Ɔ . Thesis.

Presupunem a < b și b < c – conform 
ipotezei 

Din teorema 5: (b - a)  N și (c - b) ∈ ∈ 
N 
Din „închiderea N la adunare”: (b - a) 
+ (c - b)  N ∈
Prin asociativitate: (b - a) + (c - b) = b - 
a + c - b = c - a 
Prin urmare: (c - a)  N ∈
Iar – în cele din urmă - din teorema 5: 
a < c

15 a, b, c ϵ N . Ɔ: a < b . = . a + c < b + c . Conservarea ordinii prin adunare:

 ∀ a, b, c  N: a < b ↔ a + c < b + c∈

Așa încât, adunarea aceluiași număr la 
ambii  termeni  ai  unei  inegalități  con-
servă inegalitatea.
Deci, adunarea este o operație „mono-
tonă” – adică, „respectă ordinea valori-
lor”. 
Precum spre exemplu
3 < 5 ↔ 3 + 10 < 5 + 10 ↔ 13 < 15 
Ori:
7 < 12 ↔ 7 + 4 < 12 + 4 ↔ 11 < 16 

Iar,  așa  ceva  reprezintă  o  proprietate 
fundamentală pentru rezolvarea inega-
lităților.

Dem. Hyp . Ɔ: a < b . = . b − a ϵ N . = .(b + 
c) − (a + c) ϵ N . = 
. a + c < b + c

În primul rând dacă s-ar presupune că, 
conform ipotezei, a < b
1. Din teorema 5: (b - a)  N∈  
2. Doar, că: (b + c) - (a + c) = b + c - a 
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- c = b - a 
3. Iar, din prima etapă: (b + c) - (a + c) 
= b - a  N ∈
4. Din teorema 5: a + c < b + c

Iar, în al doilea rând, în perspectivă ... 
„reciprocă”: 

Dacă se presupune că, a + c < b + c
1. Din teorema 5: ((b + c) - (a + c)) ∈ 
N 
2. Prin calcul: (b + c) - (a + c) = b - a 
3. Prin urmare: (b - a)  N∈  
4. Din teorema 5: a < b

16. a, b, a' , b' ϵ N . a < b . a' < b' : Ɔ . a + a' 
< b + b' .

Adunarea inegalităților:

 ∀ a, b, a', b'  N: (a < b  a' < b') → a∈ ∧  
+ a' < b + b'

Deci, suma a două inegalități de același 
sens dă o inegalitate de același sens.

Așa încât, așa ceva permite „adunarea” 
inegalităților

Precum, spre exemplu:
3 < 5 și 7 < 10, prin urmare 3 + 7 < 5 + 
10, adică 10 < 15

Dem. Hyp . Ɔ: a + a' < b + a' . b + a' < b + b' : 
Ɔ . Thesis.

1. S-ar presupune a < b și a' < b' – con-
form ipotezelor, desigur 
2. Din teorema 15: a < b → a + a' < b + 
a' 
3. Din teorema 15 aplicată la a' < b': a' 
+ b < b' + b 
4. Prin comutativitate: b + a' < b + b' 
5. Din etapa a 2-a și a 4-a și prin Teore-
ma 14 ( a tranzitivității): a + a' < b + a' 
< b + b' 
6. Și tot prin tranzitivitate: a + a' < b + 
b'

17. a, b, c ϵ N . a < b < c : Ɔ . c − a > c − b. Monotonia inversă a scăderii:

 ∀ a, b, c  N: a < b < c → c - a > c – b∈

Așa încât,  cu  cât  se  scade  mai  puțin 
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dintr-un  număr,  cu  atât  diferența  este 
mai mare.

Iar, așa ceva arată că scăderea are pro-
prietatea de „anti-monotonie” în primul 
argument, întrucât cu cât scade mai pu-
țin, cu atât rezultatul este mai mare.

Precum, spre exemplu:

2 < 5 < 10: 10 - 2 = 8 > 10 - 5 = 5 

Ori:
 
3 < 7 < 15: 15 - 3 = 12 > 15 - 7 = 8 

Dem. Hyp . Ɔ b − a ϵ N . c − b ϵ N . (c − b) + 
(b − a) = c − a : Ɔ . 
Thesis.

Dacă se presupune – conform ipotezei 
- că, a < b < c

Din teorema 5: (b - a)  N și (c - b) ∈ ∈ 
N 

Din teorema 14: a < c, prin urmare (c - 
a)  N ∈

Doar că, (c - a) = (c - b) + (b - a) 

Iar,  din  „închiderea  N la  adunare”  și 
din ceea ce a rezultat din teorema 5: (c 
- a) > (c - b) 
Sau prin teorema 16 aplicată la (c - b) 
și (b - a): (c - b) + (b - a) > (c - b) + 0 = 
(c - b) 

Prin urmare: c - a > c - b

18. a ϵ N . Ɔ: a = 1 .  . a > 1.∪ Dicotomia pentru numerele naturale:

 ∀ a  N: a = 1  a > 1∈ ∨

Orice număr natural este fie egal cu 1 
(cel mai mic), fie mai mare decât 1.

Iar,  așa  ceva  subliniază  faptul  că,  în 
axiomatica  peanoiană,  1  este  cel  mai 
mic  număr  natural  și  toate  celelalte 
sunt mai mari. 
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Și nici nu există numere între 0 și 1 în 
N.

Precum spre exemplu:

a = 1: a = 1 
a = 2: a > 1 
a = 3: a > 1 
a = 4: a > 1 

Și este o proprietate fundamentală pen-
tru inducția matematică, întrucât orice 
proprietate care este adevărată pentru 1 
și se transmite la următorul poate fi de-
monstrată pentru toate numerele natu-
rale.

Dem. 1 ϵ [a ϵ] Thesis.
a ϵ N . P13 : Ɔ: a + 1 > 1 : Ɔ: a + 1 ϵ [a 
ϵ] Thesis. (1)(2). Ɔ . Theor.

Doar că, demonstrația se face tot prin 
inducție: 

Pentru a = 1: evident, 1 = 1 

Pasul inductiv: 

Presupunem că proprietatea este adevă-
rată pentru toate numerele ≤ n.

Deci, pentru a = N + 1:

Din construcția numerelor naturale: N 
+ 1 > N ≥ 1 
Prin urmare: N + 1 > 1 
 Și în concluzie: a = N + 1 > 1 

Deci, inducția privind,  ∀ a  N: a = 1∈  
 a > 1∨

19. a, b ϵ N . Ɔ . a + b - = b. „Non-idempotența adunării stricte”:

 ∀ a, b  N: a + b ≠ b∈

Adunarea  unui  număr  natural  la  altul 
nu poate da rezultatul egal cu al doilea 
număr.

Deci  nu  există  vreun „număr  neutru” 
pentru adunare în N (pentru că 0  N∉  
în  sistemul peanoian).  Așa încât,  prin 
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adunare se mărește întotdeauna valoa-
rea rezultatului.

Precum, spre exemplu:
2 + 2 = 4 ≠ 2

Ori:

3 + 5 = 8 ≠ 5

În timp ce:

2 + 0 deși este egal cu 2, totuși 0  N∉
 
Așa încât, pentru orice a  N: 1 + a =∈  
a + 1 ≠ a 

Dem. a ϵ N . §1 P8 : Ɔ: a + 1 - = 1 : Ɔ: 1 ϵ [b 
ϵ] Thesis

(1) Demonstrația s-ar putea face tot într-o 
paradigmă inductivă:

Pentru b = 1: a + 1 ≠ 1 (prin axiomele 
peanoiene - succesorul lui 0 nu este 0)

Pasul inductiv: Presupunem a + b ≠ b

Atunci a + (b + 1) = (a + b) + 1 ≠ b + 1 
(prin proprietatea succesorului) 

a ϵ N . b ϵ N . b ϵ [b ϵ] Ts : Ɔ: a + b - = 
b . §1 P17
: Ɔ: a + (b + 1) - = b + 1 : Ɔ: b + 1 ϵ [b 
ϵ] Ts.
(1)(2) . Ɔ . Theor

(2)

Iar, prin următoarele trei teoreme se subliniază faptul că, „relațiile de ordine diferite sunt 
«mutual» exclusive.

Așa încât, prin toate acestea stabilește că relațiile „<”, „= ” și „>” sunt mutual exclusive - nu  
pot fi simultan adevărate pentru aceeași pereche de numere.

20. a, b ϵ N . a < b . a = b := ∧  ∀ a, b  N: a < b → a ≠ b ∈
Dem. Hyp : Ɔ: b − a ϵ N .(b − a) + a = a . P19 

: Ɔ: ∧
Și  așa  ceva  se  poate  demonstra  prin 
contradicție:

Dacă: a < b și a = b 
Din a = b: b - a = a - a = 0 
Din a < b și Teorema 5: (b - a)  N∈  
Doar că, întrucât: 0  N, dar (b - a) ∉ ∈ 
N apare o „contradicție”
Prin urmare: a < b → a ≠ b

21. a, b ϵ N . a > b . a = b := ∧  ∀ a, b  N: a > b → a ≠ b ∈

Și deși domnia sa nu demonstrează așa 
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ceva,  s-ar  putea  presupune  totuși  că, 
demonstrația este „simetrică” cu aceea 
abia propusă.

22. a, b ϵ N . a > b . a < b := ∧  ∀ a, b  N: a > b → ¬(a < b)∈  

Și deși domnia sa nu demonstrează așa 
ceva, totuși s-ar putea presupune că, tot 
prin contradicție:

Dacă: a > b și a < b 
 Din teorema 14 (a „tranzitivității”): a 
< b < a → a < a 
Doar că, din teorema 5: a < a ↔ (a - a) 

 N ↔ 0  N ∈ ∈
Și cum ... 0  N ∉
Prin urmare: a > b → ¬(a < b) 

23. a, b ϵ N : Ɔ: a < b .  . a = b .  . a >∪ ∪  
b.

„Tricotomia”  ori  „Legea  comparabili-
tății”:

 ∀ a, b  N: a < b  a = b  a > b∈ ∨ ∨

De fapt, pentru orice două numere na-
turale, este adevărată exact una dintre 
relațiile: primul este mai mic, egal sau 
mai mare decât al doilea.

Iar, aceasta este proprietatea de „com-
parabilitate totală” - orice două numere 
naturale pot fi comparate și comparația 
dă exact una dintre cele trei posibilități. 

Deci, nu există numere „necomparabi-
le”.

Precum, spre exemplu:

Pentru 5 și 8: 5 < 8 (nu 5 = 8, nu 5 > 8) 
Pentru 2 și 2: 2 = 2 (nu 2 < 2, nu 2 > 2) 
 

Iar, așa ceva reprezintă o metodă pen-
tru:

Sortare: Orice listă de numere poate fi 
sortată pentru că orice două numere pot 
fi comparate. 
 Luarea deciziilor: În orice situație în 
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care se poate face o comparare (vârste, 
prețuri,  scoruri),  există  întotdeauna  o 
relație clară. 
Algoritmi: Permite algoritmilor de cău-
tare binară să funcționeze eficient. 

Așa încât, pe aceasta teoremă se bazea-
ză „ordinea perfectă” a numerelor na-
turale.

Dem. a ϵ N . P18 : Ɔ . 1 ϵ [b ϵ] Ts. (1) Iar, așa ceva s-ar putea demonstra tot 
prin inducție (asupra lui b, cu a fix).

Cazul de bază: b = 1
Pentru orice a N, trebuie să arătăm∈  
că: a < 1  a = 1  a > 1∨ ∨

Dacă a = 1, atunci a = b 
Dacă a ≠ 1, atunci fie a = 0 (deci a < 
1), fie a > 1
În sistemul peanoean: 1 este primul nu-
măr natural - după 0, va fi admis în in-
terpretarile ulterioare.
Prin proprietățile axiomelor: orice a ∈ 
N satisface exact una din relații

Pasul inductiv:
S-ar  putea  presupunem  că,  teorema 
este adevărată pentru b (ipoteza induc-
tivă):

 ∀ a N : (a < b) (a = b)  (a > b)∈ ∨ ∨

Și ar trebui să se demonstreze că, pen-
tru b + 1:

 ∀ a  N : (a < b + 1)  (a = b + 1) ∈ ∨ ∨ 
(a > b + 1)

Din ipoteza inductivă,  pentru orice a, 
există trei cazuri:

Cazul 1: a < b

Prin definiție: ∃ k  N, k ≥ 1 cu a + k =∈  
b
Atunci a + k + 1 = b + 1, deci a < b + 1 

a, b ϵ N . a < b : Ɔ . a < b + 1. (2)

a, b ϵ N . a = b : Ɔ . a < b + 1. (3)

a, b ϵ N . a > b : Ɔ: a − b ϵ N . P18
: Ɔ: a − b = 1 .  . a − b > 1.∪

(4)

a, b ϵ N . a − b = 1 : Ɔ . a = b + 1. (5)

a, b ϵ N . a − b > 1 : Ɔ . a > b + 1. (6)

a, b ϵ N . a > b .(4)(5)(6) : Ɔ: a = b + 
1 .  . a > b + 1 .∪

(7)

a, b ϵ N : a > b .  . a = b .  . a > b :∪ ∪  
(2)(3)(7)  Ɔ  a <∴ ∴
b + 1 .  . a = b + 1 .  . a > b + 1.∪ ∪

(8)

a, b ϵ N . b ϵ [b ϵ] Ts .(8) : Ɔ: b + 1 ϵ [b 
ϵ] Ts.

(9)

(1)(9). Ɔ . Theor.
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Cazul 2: a = b

Atunci a + 1 = b + 1, deci a < b + 1 

Cazul 3: a > b

Din demonstrația originală (liniile 4-7): 
a > b → a - b  N∈

Prin teorema 18 (tricotomia pentru di-
ferențe): (a - b = 1)  (a - b > 1)∨

Sub-cazul 3.1: a - b = 1

Atunci a = b + 1

Sub-cazul 3.2: a - b > 1

Atunci a > b + 1 

Demonstrarea unicității (exact una din 
relații):

Prin proprietățile ordinii și egalității:

a < b  a = b este imposibil (a nu poa∧ -
te fi mai mic decât el însuși)

a < b  a > b este imposibil (contra∧ -
dicție directă)

a = b  a > b este imposibil (a nu poa∧ -
te fi mai mare decât el însuși)

Concluzie:
Prin inducție matematică, teorema este 
demonstrată pentru toate numerele na-
turale. 

De fapt, demonstrația domnului Peano 
se bazează pe teorema 18 (care stabi-
lește tricotomia pentru diferențe) și pe 
proprietățile fundamentale ale succeso-
rului în axiomele sale.

„§3. De maximis et minimis.

Explicationes.
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Sit a ϵ K N, hoc est sit a quaedam numerorum classis; tunc Ma legatur maximus inter a, et 
Wa legatur minimus inter a.

Definitiones.”

§3. Despre maxime și minime.

Explicații.

Fie a N, adică a este o submulțime a numerelor naturale. Atunci, max(a) (notat Ma) este∈  
maximul lui a, iar min(a) (notat Wa) este minimul lui a.

Definiții.

Notația originală Interpretare contemporană

1. a ϵ K N . Ɔ: Ma = [x ϵ](x ϵ a  a . >∴  
x :=  ).∧

Maximul clasei a

Fie a  K N. ∈
Atunci: Ma = x dacă x  a și ∈  ∀ y  a, y ≤ x∈

Dacă a este o clasă de numere naturale (adică o 
mulțime de numere naturale, unde numerele na-
turale sunt {1, 2, 3 ...}) maximul Ma este un nu-
măr x din clasa a astfel încât toate celelalte nu-
mere y din a sunt mai mici sau egale cu x. Cu 
alte cuvinte, x este cel mai mare element al clasei 
a.

Și astfel se definește Ma, maximul clasei a, care 
este un element x din a care este mai mare sau 
egal decât orice alt element y din a. 

În accepții  contemporane,  aceasta este  definiția 
standard a maximului unei mulțimi: x este maxi-
mul dacă x  a și nu există niciun y  a cu y >∈ ∈  
x.

2. a ϵ K N . Ɔ: Wa = [x ϵ](x ϵ a  a . <∴  
x :=  ).∧

Fie a  K N. ∈
Atunci: Wa = x dacă x  a și ∈  ∀ y  a, y ≥ x∈

Dacă a este o clasă de numere naturale (adică o 
mulțime de numere naturale, unde numerele na-
turale sunt {1, 2, 3 ...}) minimul Wa este un nu-
măr x din clasa a astfel încât toate celelalte nu-
mere y din a sunt mai mari sau egale cu x. Cu 
alte cuvinte, x este cel mai mic element al clasei 
a.
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Și astfel se definește Wa, minimul clasei a, care 
este un element x din a care este mai mic sau 
egal decât orice alt element y din a. 

În accepții  contemporane,  aceasta este  definiția 
standard a minimului unei mulțimi: x este mini-
mul dacă x  a și nu există niciun y  a cu y <∈ ∈  
x.

„Theoremata.”

Teoreme.

Notația originală Notația  contemporană  reformulată  în 
limbaj natural

3. n ϵ N . a ϵ K N . a - =  . a ∧ ϶ > n =  :∧  
Ɔ . Ma ϵ N.
DE  VERIFICAT  GROK  (GEMINI 
OK, CHAT .... NU!)

Dacă n este un număr natural și a este o 
clasă  nevidă  de  numere  naturale  care 
nu este conținută în mulțimea {1, 2 ... 
n} (adică nu este mărginită superior de 
n) atunci clasa a are un maxim Ma, iar 
acest maxim este un număr natural.

Fie n  N, a  K N. Dacă a ≠  și a∈ ∈ ∅  
 {1, 2 ...⊈  n}, atunci Ma  N∈

Dem. a ϵ K N . a - = . a ∧ ϶ > 1 =  : Ɔ: a =∧  
1 : Ɔ . Ma = 1 :
Ɔ . Ma ϵ N.

(1) Cazul de bază: a  K N . a ≠  . a ∈ ∅ ⊆ 
{1} : →Ma = 1  N∈
Pasul de inducție: n  N . a  K N . a∈ ∈  

 {1, 2 ...⊈  n+1} . n+1  a : →Ma =∈  
n+1  N∈
Cazul alternativ: n  N . a  K N . a∈ ∈  

 {1, 2 ...⊈  n+1} . n+1  a : →a  {1,∉ ⊆  
2 ... n}
Concluzie prin inducție:   ∀ n  N : a∈  

 K N . a ≠  . a  {1, 2 ...∈ ∅ ⊈  n} : →Ma 
 N∈

(1) Ɔ: 1 ϵ [n ϵ] (Hp Ɔ Ts). (2)

n ϵ N . a ϵ K N . a ϶ > n + 1 =  . n + 1∧  
ϵ a : Ɔ: n + 1 = 
Ma : Ɔ: Ma ϵ N

(3)

n ϵ N . a ϵ K N . a ϶ > n + 1 =  . n + 1∧  
- a ϵ : Ɔ:
a ϶ > n = .∧

(4)

n ϵ [n ϵ] (Hp ƆTs)
. a ϵ K N . a ϶ > n + 1 =  . n + 1 - ∧ ϵ 
a : Ɔ: Ma ϵ N.

(5)

n ϵ [n ϵ] (Hp ƆTs) .(6) : Ɔ . (n + 1) [n 
ϵ] (Hp ƆTs).

(7)

(2)(7). §1 P9 : Ɔ: n ϵ N . Ɔ . Hp ƆTs. (Th.)

4. a ϵ K N . a - =  : Ɔ . Wa ∧ ϵ N. Dacă a este o clasă nevidă de numere 
naturale, atunci a are un minim Wa, iar 
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acest minim este un număr natural.

a  K N . a ≠  : →Wa  N∈ ∅ ∈

Aceasta reflectă proprietatea de „bună 
ordonare”  a  numerelor  naturale:  orice 
clasă nevidă de numere naturale are un 
element minim.

5. a ϵ K N . Ɔ: Wa = M[x ϵ](a ϶ < x = ).∧ Minimul Wa al clasei a este maximul 
mulțimii  numerelor  naturale  x  care 
sunt mai mici  sau egale cu toate ele-
mentele din a. 

a  K N . Wa = Ma { x  N∈ ∈  |  ∀ y ∈ 
a , y ≥ x }

Spre exemplu, dacă a = {2, 3, 4}, mul-
țimea numerelor x cu x ≤ y pentru ori-
ce y  a este {1, 2}, iar maximul aces∈ -
tei mulțimi este 2, deci Wa = 2.

„§4. De multiplicatione.

Definitiones.”

Despre înmulțire.

Definiții.

Notația originală Interpretare contemporană

1. a ϵ N . Ɔ . a × 1 = a. Înmulțirea cu 1:

 ∀ a  N : a × 1 = a∈
2. a, b ϵ N . Ɔ . a × (b + 1) = a × b + a. Înmulțirea recursivă:

 ∀ a, b  N : a × (b + 1) = a × b + a∈
ab = a × b; ab + c = (ab) + c; abc = (ab)c . 

„Theoremata.”

Teoreme.

Notația originală Notația  contemporană  reformulată  în 
limbaj natural

3. a, b ϵ N . Ɔ . ab ϵ N. Închiderea înmulțirii:
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 ∀ a, b  N : a × b  N∈ ∈

Produsul a două numere naturale este 
tot număr natural.

Precum, spre exemplu: 3 × 2 = 3 × (1 + 
1) = 3 × 1 + 3 = 3 + 3 = 6  N∈

Dem. a, b ϵ N . P1 : Ɔ: a × 1 ϵ N : Ɔ . 1 ϵ [b 
ϵ] Ts.

Prin inducție asupra lui b:

S-ar putea admite, că: b = 1

Din prima definiție: a × 1 = a  N∈  

Pasul inductiv: Presupunem a × b  N∈  

Din a doua definiție: a × (b + 1) = a × b 
+ a 

Dar, cum a × b  N și a  N, din în∈ ∈ -
chiderea adunării: a × b + a  N∈

a, b ϵ N . b ϵ [b ϵ] Ts : Ɔ: a × b ϵ N . §1 
P19 : Ɔ: ab + a ϵ N .
P1 : Ɔ: a(b + 1) ϵ N : Ɔ: b + 1 ϵ [b ϵ] 
Ts.

(2)

(1)(2). Ɔ . Theor.

4. a, b, c ϵ N . Ɔ . (a + b)c = ac + bc . Distributivitatea la dreapta:

 ∀ a, b, c  N : (a + b) × c = a × c + b ×∈  
c

Înmulțirea se distribuie față de aduna-
re.

Precum, spre exemplu: (2 + 3) × 4 = 5 
× 4 = 20 

Și:

2 × 4 + 3 × 4 = 8 + 12 = 20

„Nota. Haec est prop. 5ɑ Euclidis elem. libri VII”

Notă. Aceasta este propoziția 5ɑ din „Elementele lui Euclid”, Cartea a VII-a.

Dem. a, b ϵ N . P1 : Ɔ: 1 ϵ [c ϵ] Ts. (1) Așa încât, s-ar putea accepta că, 
prin inducție asupra lui c:

Dacă, c = 1: 

(a + b) × 1 = a + b (din definiția 1) 

a, b, c ϵ N . c ϵ [c ϵ] Ts (2)

: Ɔ: (a + b)c = ac + bc . §1 P22
: Ɔ: (a + b)c + a + b = ac + bc + a + b . 
P2
: Ɔ: (a + b)(c + 1) = a(c + 1) + b(c + 
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1) : Ɔ:
c + 1 ϵ [c ϵ] Ts.

a × 1 + b × 1 = a + b (tot, din definiția 
1)
 
Pasul inductiv: 

Se presupune că: 
(a + b) × c = a × c + b × c 
(a + b) × (c + 1) = (a + b) × c + (a + b) 
(din definiția 2) 
= a × c + b × c + a + b (din ipoteza in-
ductivă) 
= a × c + a + b × c + b (comutativitatea 
adunării) 
= a × (c + 1) + b × (c + 1) (din definiția 
2)

(1)(2). Ɔ . Theor.

5. a ϵ N . Ɔ . 1 × a = a . Neutralitatea lui 1 la stânga:

 ∀ a  N : 1 × a = a∈

Precum, spre exemplu: 1 × 5 = 5

Dem. 1 ϵ [a ϵ] Ts. (1) Pur și simplu, prin inducție asupra lui 
a:

Dacă, a = 1 atunci 1 × 1 = 1 (din prima 
definiție) 

Pasul inductiv: 

Se presupune că: 1 × a = a 

1 × (a + 1) = 1 × a + 1 (din a doua defi-
niție) 
= a + 1 (din ipoteza inductivă)  

a ϵ [a ϵ] Ts . Ɔ . 1 × a = a . Ɔ . 1 × a + 1 
= 
a + 1 . × . 1 × (a + 1) = a + 1 . Ɔ . a + 1 
ϵ [a ϵ]

(2)

Ts.

(1)(2). Ɔ . Theor.

6. a, b ϵ N . Ɔ . ba + a = (b + 1)a. Formula pentru înmulțirea cu succeso-
rul:

 ∀ a, b  N : b × a + a = (b + 1) × a∈

De fapt, aceasta este „forma inversă” a 
celei de-a doua definiții.

Și deși domnia sa nu demonstrează așa 
ceva, s-ar putea totuși admite că, toate 
acestea ar rezulta, direct din comutati-
vitate (din teorema 7) și din a doua de-
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finiție.

Precum, spre exemplu:

3 × 4 + 4 = 12 + 4 = 16 = 4 × 4 = (3 + 
1) × 4

7. a, b ϵ N . Ɔ . ab = ba. (Eucl. 
VII, 16)

Comutativitatea:

 ∀ a, b  N : a × b = b × a∈

Precum, spre exemplu: 3 × 4 = 12 = 4 
× 3

Dem. a ϵ N . P5 . P1
: Ɔ . a × 1 = a = 1 × a : Ɔ: 1 ϵ [b ϵ] Ts.

(1) Prin inducție asupra lui b:
Dacă b = 1, atunci: a × 1 = a = 1 × a 
(din prima definiție și din a 5-a teore-
mă)

Pasul inductiv: 

Se presupune că: a × b = b × a 

a × (b + 1) = a × b + a (din a doua defi-
niție) 
= b × a + a (din ipoteza inductivă) 
= (b + 1) × a (din a 6-a teoremă) 

Deci: a × b = b × a 

a, b ϵ N . b ϵ [b ϵ] Ts
: Ɔ: ab = ba : Ɔ: ab + a = ba + a . P1
.P6: Ɔ: a(b + 1) = (b + 1)a : Ɔ: b + 1 ϵ 
[b ϵ]

(2)

Ts.

(1)(2). Ɔ . Theor.

8. a, b, c ϵ N . Ɔ . a(b + c) = ab + ac . Distributivitatea generalizată:

 ∀ a, b, c  N : a × (b + c) = a × b + a ×∈  
c

Precum, spre exemplu: 
3 × (2 + 4) = 3 × 6 = 18 

Ori:

3 × 2 + 3 × 4 = 6 + 12 = 18

Dem. P4 . P7 : Ɔ . Theor. Din teorema 4 și acceptând comutativi-
tatea (teorema 7): a × (b + c) = (b + c) 
× a = b × a + c × a = a × b + a × c 

Așa încât: a × (b + c) = a × b + a × c .

9. a, b, c ϵ N . a = b : Ɔ: ac = bc . Simplificarea înmulțirii:
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 ∀ a, b, c  N : a = b → a × c = b × c∈

Precum, spre exemplu: 
Dacă a = 3 și b = 3, atunci 3 × 5 = 3 × 
5

Dem. a, b ϵ N . a = b :: Ɔ:: 1 ϵ [c ϵ] Ts ∴ c ϵ 
[c ϵ] Ts

Asa încât, dacă a = b.

Prin inducție asupra lui c:

Cazul de bază: c=1.

a × 1= a = b = b × 1 

deci a × 1= b × 1.

Pas inductiv: 

Dacă pentru un c N: a∈  × c=b × c 

Atunci: a × (c + 1) = b × ( c+1 ) 

Prin definiția înmulțirii și prin recuren-
ță:

a × ( c + 1 ) = a × c + a 
b × (c + 1) = b × c + b 

Prin ipoteza inductivă: a × c = b × c.
Dar, a = b.

Deci:

a × ( c + 1 ) = a × c + a = b × c + b = b 
× ( c + 1 ). 

Deci:

a × c=b × c pentru orice c N. ∈

. Ɔ: ac = bc . a = b : Ɔ: ac + a = bc + b : 
Ɔ:

a(c + 1) = b(c + 1) : Ɔ: c + 1 ϵ [c ϵ] Ts

:: Ɔ: c ϵ N . Ɔ . Ts.

10. a, b, c ϵ N : a < b : Ɔ . (b − a)c = bc − 
ac. 

(Eucl. 
VII, 7)

Distributivitatea diferenței:

 ∀ a, b, c  N : a < b → (b − a) × c = b∈  
× c − a × c

Precum, spre exemplu, pentru:

113

https://esteticademersurilorinutile.com/
https://esteticademersurilorinutile.com/


                                    esteticademersurilorinutile.gmail.com
                                    esteticademersurilorinutile.com   

5 < 8 și c = 3: (8 − 5) × 3 = 3 × 3 = 9 

Și:

8 × 3 − 5 × 3 = 24 − 15 = 9

Dem. Hyp . Ɔ: b − a ϵ N .(b − a) + a = b : Ɔ:
(b − a)c + ac = bc : Ɔ: (b − a)c = bc − 
ac.

Din a < b: b − a  N și (b − a) + a = b∈  

Înmulțind cu c: ((b − a) + a) × c = b × c 

Prin distributivitate: (b − a) × c + a × c 
= b × c 

Prin definiția diferenței: (b − a) × c = b 
× c − a × c 

11. a, b, c ϵ N . a < b : Ɔ: ac < bc. Monotonia înmulțirii:

 ∀ a, b, c  N : a < b → a × c < b × c∈

Precum, spre exemplu:

3 < 5 →3 × 4 = 12 < 20 = 5 × 4

Dem. Hyp . Ɔ: b − a ϵ N . P3 : Ɔ: (b − a)c ϵ 
N.
P10 : Ɔ: bc − ac ϵ N : Ɔ Thesis.

Din teorema 10: (b − a) × c = b × c − a 
× c 

Dar, cum: a < b →b − a  N →(b − a)∈  
× c  N ∈

Deci, b × c − a × c  N →a × c < b ×∈  
c 

12. a, b, c ϵ N . Ɔ ∴ a < b . = . ac < bc : a 
= b . = 
. ac = bc : a > b . = . ac > bc. 

Caracterizarea ordinii prin înmulțire:

 ∀ a, b, c  N : (a < b ↔ a × c < b × c)∈  
 (a = b ↔ a × c = b × c)  (a > b ↔∧ ∧  

a × c > b × c)

Așa încât, înmulțirea păstrează ordinea 
Deci, este monotonă.

13. a, b, a' , b' ϵ N . a < a' . b < b' : Ɔ: ab < 
a' b' .

Monotonia înmulțirii:

Pentru a, b, a', b' N: dacă a < a' și b <∈  
b', atunci ab < a'b'.

Precum spre exemplu: 
Dacă 3 < 5 și 4 < 7, atunci 3×4 = 12 < 
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5×7 = 35.

Și deși domnia sa nu demonstrează așa 
ceva, totuși s-ar putea accepta că:

Din a < a' rezultă a' = a + k pentru un k 
≥ 1 
Din b < b' rezultă b' = b + m pentru un 
m ≥ 1 
Atunci: a'b' = (a + k)(b + m) = ab + am 
+ kb + km 
Dar, cum: k, m ≥ 1, avem am + kb + 
km > 0 
Prin urmare, a'b' > ab, deci ab < a'b'.

14. a, b ϵ N : Ɔ . ab . >  = . a.∪ Pentru orice a, b  : a∈ ℕ ×b ≥ a

Dacă  a  și  b  sunt  numere  naturale, 
atunci a × b este mai mare sau egal cu 
a.

Așa încât, așa ceva se bazează pe pro-
prietățile de bază ale înmulțirii în N.

Dacă b = 1:

a × b=a × 1=a.

În acest caz, a × b este egal cu a. Con-
diția „mai mare sau egal” este îndepli-
nită.

Dacă b > 1:

b  este  cel  puțin  2,  deci  b=1+k,  unde 
k N și k≥1.∈

a × b=a × (1 + k)=a × 1+a × k=a + ak.

Și întrucât a este un număr natural și 
k≥1, produsul a × k va fi un număr na-
tural pozitiv.

Prin urmare, ab = a + (un număr ≥0).

Așa încât a × b este mai mare sau egal 
cu a.
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15. a, b, c ϵ N . Ɔ . a(bc) = abc . Asociativitatea înmulțirii:

 ∀ a, b, c  N : a × (b × c) = (a × b) × c∈

Precum, spre exemplu: 2 × (3 × 4) = 2 
× 12 = 24 = 6 × 4 = (2 × 3) × 4

Dem. a, b ϵ N . P1 : Ɔ: 1 ϵ [c ϵ] Ts. (1) Prin inducție:

Dacă c = 1, atunci: a × (b × 1) = a × b 
= (a × b) × 1 

Pasul inductiv: 

Se presupune că: a × (b × c) = (a × b) × 
c

a × (b × (c + 1)) = a × (b × c + b) (din 
definiția 2)
= a × (b × c) + a × b (din distributivita-
te)
= (a × b) × c + a × b (din ipoteza in-
ductivă)
= (a × b) × (c + 1) tot, din definiția 2.

a, b, c ϵ N . c ϵ [c ϵ] Ts
: Ɔ: a(bc) = abc : Ɔ: a(bc) + ab = abc + 
ab :
Ɔ: a(bc + b) = ab(c + 1) : Ɔ: a(b(c + 1)) 
= 
ab(c + 1) : Ɔ: c + 1 [c ϵ] Ts.

(2)

(1)(2). Ɔ . Theor.

„§5. De potestatibus.

Definitiones.”

§5. Despre ridicarea la putere.

Definiții.

Notația originală Interpretare contemporană

1. a ϵ N . Ɔ . a1 = a. Pentru orice a ∈N: a¹ = a 

2. a, b ϵ N . Ɔ . ab+1 = aba. Pentru orice a, b ∈N: a(b+1) = ab × a 

„Theoremata.”

Teoreme

Notația originală Notația  contemporană  reformulată  în 
limbaj natural

3. a, b ϵ N . Ɔ . ab ϵ N. Închiderea  numerelor  naturale  față  de 
ridicarea la putere:
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Pentru orice a, b ∈N, ab ∈N.

Dem. a ϵ N . P1 : Ɔ . 1 ϵ [b ϵ] Ts. (1) Demonstrația  s-ar  putea  face  prin  in-
ducție asupra lui b:

Dacă: b = 1 
a¹ = a ∈N (prin definiție) 

Pasul inductiv: 
Presupunem ak ∈N 
a(k+1) = ak × a 

Dar, cum ak ∈N și a ∈N, prin închi-
derea înmulțirii avem a(k+1) ∈N 

a, b ϵ N . b ϵ [b ϵ] Ts
: Ɔ: ab ϵ N . §4P3: Ɔ: aba ϵ N.
P1: Ɔ: ab+1 ϵ N : Ɔ: b + 1 ϵ [b ϵ] Ts.

(2)

(1)(2). Ɔ . . Theor.

4. a ϵ N . Ɔ . 1a = 1. 1a =  1,  prin  definiție,  întrucât  1  este 
chiar primul număr natural.

5. a, b, c ϵ N . Ɔ . ab+c = abac . Legea exponenților pentru adunare:

Pentru a, b, c ∈N: a(b+c) = ab × ac

Precum, spre exemplu: 

2(3+4) = 27 = 128 = 2³ × 2⁴ = 8 × 16

Și deși domnia sa nu demonstrează așa 
ceva, s-ar putea totuși demonstra prin 
inducție asupra lui c:

Dacă: c = 1 

a(b+1) = ab × a¹ = ab × a (prin definiții) 

Pasul inductiv: 

Și s-ar presupune că, de fapt:

 a(b+k) = ab × ak 

Și atunci:

a(b+(k+1)) = a((b+k)+1) = a(b+k) × a = (ab × ak) 
× a = ab × (ak × a) = ab × a(k+1) 

Deci: a(b+c) = ab × ac  , pentru orice a, b, 
c ∈N
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6. a, b, c ϵ N . Ɔ . (ab)c = acbc. Distribuția puterilor asupra produsului:

Pentru orice a, b, c ∈N: (ab)c = ac × bc

Precum, spre exemplu:
(2 × 3)4 = 64 = 1296 = 24 × 34 = 16 × 81

Și deși domnia sa nu demonstrează așa 
ceva, s-ar putea demonstra, prin induc-
ție asupra lui c:

Dacă: c = 1
(ab)¹ = ab = a¹ × b¹ (prin definiția pute-
rilor)

Pasul inductiv: 

Presupunem că (ab)k = ak × bk

 (ab)(k+1) = (ab)k × (ab) = (ak × bk) × 
(ab) = ak × a × bk × b = a(k+1) × b(k+1)

7. a, b, c ϵ N . Ɔ . (ab)c = abc . Puterea unei puteri:

Pentru orice a, b, c ∈N: (ab)c = a(bc)

Precum, spre exemplu: (2³)² = 8² = 64 = 
2(3×2) = 26

Și deși domnia sa nu demonstrează așa 
ceva s-ar putea demonstra, prin induc-
ție asupra lui c:

Dacă: c = 1

(ab)¹ = ab = a(b×1) (prin proprietatea ele-
mentului neutru)

Pasul inductiv: 

Presupunem că (ab)k = a(bk)

(ab)(k+1) = (ab)k × ab = a(bk) × ab = a(bk+b) = 
a(b(k+1))

8. a, b, c ϵ N . Ɔ  a < b . = . a∴ c < bc : a = 
b . = . ac = bc : a > b . = . ac > bc .

„Monotonicitatea exponențierii”

Pentru orice a, b, c  ∈ N, avem:
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a < b ↔ ac < bc

a = b ↔ ac = bc

a > b ↔ ac > bc

 ∀ a,b,c  ∈ N: (a < b ↔ ac < bc)  (a =∧  
b ↔ ac = bc)  (a > b ↔ a∧ c > bc)

Așa încât, prin așa ceva se afirmă că, 
exponențierea păstrează ordinea pentru 
numerele naturale. 

De  fapt,  dacă  se  ridică  două  numere 
naturale la aceeași putere, relația de or-
dine dintre ele rămâne aceeași.

Și deși domnia sa nu demonstrează așa 
ceva, s-ar putea – totuși – presupune, 
că:

În cazul în care: a < b → ac < bc

Așa ceva, se poate demonstra prin in-
ducție după c:

Deci, dacă: c = 1

a1 = a < b = b1

Pasul inductiv: 
Presupunem ak < bk, demonstrăm a(k+1) 

< b(k+1)

a(k+1) = ak × a < bk × a (din ipoteza in-
ductivă și a > 0)
bk × a < bk × b = b(k+1) (pentru că a < b)
Prin tranzitivitate: a(k+1) < b(k+1) 

Dar, dacă: a = b → ac = bc

Desigur, dacă a = b, atunci ac = bc pen-
tru orice c.

Iar, dacă: a > b → ac > bc

Se poate demonstra exact ca și în pri-
mul caz, prin inducție.

Doar că, așa ceva nu e valabil pentru 
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toate soiurile de numere. 

Spre exemplu, pentru acelea negative:
 (-2)2 = 4 > 1 = (-1)2, deși -2 < -1.

În  cazul  numerelor  naturale 
„funcționează” pentru că toate sunt po-
zitive  și  exponențierea  cu  exponenți 
naturali este strict crescătoare.

9. a, b, c ϵ N . a > 1 . Ɔ  b < c . = . a∴ b< 
ac:
b = c . = . ab = ac : b > c . = . ab > ac.

„Monotonicitatea strictă a exponenție-
rii”:

Pentru a ∈N cu a > 1 și b, c ∈N:

b < c ↔ ab < ac

b = c ↔ ab = ac

b > c ↔ ab > ac

Și deși domnia sa nu demonstrează nici 
așa ceva, s-ar putea – totuși – re-presu-
pune, că:

Partea 1-a: b < c → ab < ac

Din b < c s-ar presupune că există k ∈ 
N astfel că c = b + k.
Atunci:
ac = a(b+k) = ab × ak

Iar, cum, a > 1 și k ≥ 1, avem ak ≥ a1 = 
a > 1.
Prin urmare:
ac = ab × ak > ab × 1 = ab

Deci ab < ac.

Partea 2-a: ab < ac → b < c
Se demonstrează prin contradicție. 

Și dacă se presupune că b ≥ c.

Dacă b = c, atunci ab = ac (contradicție 
cu ab < ac)
Dacă b > c, avem ab > ac (contradicție 
cu ab < ac)

Prin urmare b < c.

Partea 3-a: Cazurile pentru egalitate și 
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„>”

În același manieră, pentru b = c, ab = 
ac, iar pentru b > c se demonstrează în 
aceeași manieră ca în partea 1-a că ab > 
ac.

Așa încât, se stabilește că exponențiala 
cu baza > 1 păstrează și reflectă ordi-
nea. 

Iar, așa ceva este folosit – cel puțin -
pentru:

Rezolvarea inegalităților exponențiale
Definirea logaritmilor ca „funcții expo-
nențiale inverse”.

Doar  că,  această  teoremă  este  validă 
doar pentru a > 1. 
Pentru a = 1, avem 1n = 1 pentru orice 
n,  deci  funcția  exponențială  nu  este 
strict monotonă. 
Dar,  domnul  Peano  specifică  explicit 
această condiție.

„§6. De divisione.

Explicationes.”

Signum / legatur divisus per. 

>> Ɗ >> dividit, sive est divisor

>> Ɖ >> est multiplex. 

>> Np >> numerus primus.

>> π >> est primus cum.

§6. Despre împărțire.

Explicații.

Simbol / leagă Împărțit la

>> Ɗ >> Împarte sau este divizor

>> Ɖ >> Este multiplu

>> Np >> Număr prim.

>> π >> „Este primul care ...”
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„Definitiones.”

Definiții.

Notația originală Interpretare contemporană

1. a, b ϵ N . Ɔ: b/a = N [x ϵ](xa = b). b/a este mulțimea {x N∈  | xa = b}

b/a reprezintă „câtul” împărțirii lui b la a (când 
există).

2. a, b ϵ N . Ɔ: a Ɗ b . = . b/a - = ∧ a divide pe b (notat a  | b) dacă și numai dacă exis-
tă q  N astfel încât b = aq.∈

3. a, b ϵ N . Ɔ: b Ɖ a . = . a Ɗ b. Pentru orice a, b  N: b∈  | a ↔ a | b

Astfel definindu-se echivalența relației de divizi-
bilitate în ambele sensuri.

4. Np = N [x ϵ]( ϶ Ɗ x .  ϶ > 1 .  ϶ < x := 
).∧

 = {x  N : x > 1  ¬  d(1 < d < x  dℙ ∈ ∧ ∃ ∧  | x)}
Astfel definindu-se mulțimea numerelor prime ca 
acele numere naturale mai mari ca 1 care nu au 
divizori proprii.

5. a, b ϵ N . Ɔ:: a π b  =  ∴ ∴ ϶ Ɗ a . ϶ Ɗ 
b . ϶ > 1 :=  .∧

Pentru a, b  N: cmmdc(a, b) = max{d  N : d∈ ∈  | 
a  d∧  | b  d > 1}∧
Astfel definindu-se cel mai mare divizor comun.

6. a, b ϵ N . Ɔ ∴ Ɗ (a, b) := : ϶ Ɗ a . ∩ . ϶ 
Ɗ b.

Pentru a, b  N: d∈  | (a, b) ↔ d | a  d∧  | b

Un număr împarte cmmdc-ul dacă și numai dacă 
împarte ambele numere.

7. a, b ϵ N . Ɔ  ∴ ϶ Ɖ(a, b) := : ϶ Ɖa . ∩ . ϶ 
Ɖb.

Cel mai mare divizor comun:

Pentru a, b  N, cmmdc(a, b) este definit ca fi∈ -
ind numărul care divide atât pe a, cât și pe b și 
este cel mai mare, cu această proprietate:

 ∀ a, b  N: cmmdc(a, b) = max{d  N : d | a ∈ ∈ ∧ 
d | b}

ab/c = (ab)/c; a/b/c = (a/b)/c; a/b × c = 
(a/b)c

ab/c = (ab)/c
a/b/c = (a/b)/c 
a/b × c = (a/b)c

“Theoremata.

Nota. Haec theoremata ut in substractione demonstrantur.”

 Teoreme

Aceste teoreme sunt demonstrate în mod similar cu cele din scădere.
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Notația originală Notația  contemporană  reformulată  în 
limbaj natural

8. a, b, a' , b' ϵ N . a = a' . b = b' : Ɔ . a/b = 
a'/b' .

 ∀ a, b, a', b'  N: a/b = a'/b' .∈

9. a, b, a' , b' ϵ N . a = a' . b = b' : Ɔ: a Ɗ b 
. = 
. a' Ɗ b' .

Egalitatea  fracțiilor  este  „bine  defini-
tă”:

 ∀ a, b, a', b'  N: (a = a'  b = b') →∈ ∧  
a/b = a'/b'

10. a, b, c ϵ N . Ɔ: aƆ = b . = . Ɔ = b/a. Definirea împărțirii printr-o „ecuație de 
multiplicare”.

 ∀ a, b, c  N: ac = b ↔ c = b/a∈

11. a, b ϵ N . Ɔ: a Ɗ b . = . b/a ϵ N. Un număr împarte altul dacă și numai 
dacă câtul este natural.

 ∀ a, b  N: a∈  | b ↔ b/a  N∈

12. a ϵ N . Ɔ . a/1 = a. Împărțirea  la  „1”  lasă  numărul  ne-
schimbat.

 ∀ a  N: a/1 = a ∈

13. a ϵ N . Ɔ . a/a = 1. Orice  număr  împărțit  la  el  însuși  dă 
unu.

 ∀ a  N: a/a = 1∈

14. a ϵ N . Ɔ . 1 Ɗ a. Unu împarte orice număr natural.

 ∀ a  N: 1∈  | a

15. a ϵ N . Ɔ . a Ɗ a. Reflexivitatea divizibilității:

 ∀ a  N: a∈  | a

Orice număr se împarte pe sine ().

16. a, b ϵ N . ab/b = a. Legea simplificării în împărțire:

 ∀ a, b  N: (ab)/b = a∈
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17. a, b ϵ N . a Ɗ b : Ɔ . a(b/a) = b. Dacă a împarte b, atunci a ori „câtul dă 
b”.

 ∀ a, b  N: a∈  | b → a × (b/a) = b

18. a, b, c ϵ N . Ɔ Ɗ b : Ɔ . a(b/c) = ab/c. Proprietatea distributivă a multiplicării 
față de împărțire:

 ∀ a, b, c  N: c∈  | b → a × (b/c) = (ab)/c

19. a, b, c ϵ N . a Ɖ bc : Ɔ: a/(bƆ) = a/b/c. Împărțirea la un produs se poate face 
succesiv:

 ∀ a, b, c  N: a∈  | bc → a/(bc) = (a/b)/c

20. a, b, c ϵ N . a Ɖ b . b Ɖ c : Ɔ . a/(b/c) = 
a/b × c. 

Împărțirea  la  o  fracție  echivalează cu 
multiplicarea la inversă:

 ∀ a, b, c  N: (a∈  | b  b∧  | c) → a/(b/c) = 
(a/b) × c

21. a, m, n ϵ N . m > n : Ɔ . am/an = am−n. Regula  împărțirii  puterilor  cu  aceeași 
bază:

 ∀ a, m, n  N: m > n → a∈ m/an = a(m-n)

22. a, b ϵ N . Ɔ . a Ɗ ab. Orice număr împarte produsul  său cu 
alt număr:

 ∀ a, b  N: a∈  | ab

23. a, b, c ϵ N . a Ɗ b . b Ɗ c : Ɔ . a Ɗ c. Divizibilitatea este tranzitivă:

 ∀ a, b, c  N: (a∈  | b  b∧  | c) → a | c

Doar  că,  domnia  sa  nu  demonstrează 
așa ceva, deși s-ar putea accepta, că:

 Din a | b, există k₁  N astfel încât b =∈  
a × k₁ 
Din b | c, există k₂  N astfel încât c =∈  
b × k₂ 
Substituind: c = (a × k₁) × k₂ = a × (k₁ 
× k₂) 
Cum k₁ × k₂  N, rezultă a∈  | c 
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24. a, b, c ϵ N . a Ɗ b Ɗ c : Ɔ . c/a Ɖ c/b. Dacă există o secvență de divizibilități, 
se păstrează ordinea în câturi:

 ∀ a, b, c  N: (a∈  | b | c) → (c/a) | (c/b)

25. a, b, c ϵ N . c Ɗ a . c Ɗ b : Ɔ . (a + b)/c 
= a/c + b/c . 

Distributivitatea împărțirii față de adu-
nare:

 ∀ a, b, c  N: (c∈  | a  c∧  | b) → (a + b)/c 
= a/c + b/c

26. a, b, c ϵ N . Ɔ Ɗ a . Ɔ Ɗ b . a > b : Ɔ:
(a − b)/c = a/c − b/c. 

Distributivitatea împărțirii față de scă-
dere:

 ∀ a, b, c  N: (c∈  | a  c∧  | b  a > b) →∧  
(a - b)/c = a/c - b/c

Proprietăți de divizibilitate pentru combinații liniare:

27. a, b, c ϵ N . c Ɗ a . c Ɗ b : Ɔ . c Ɗ a + 
b.

c | a  c∧  | b → c | (a + b)

28. a, b, c ϵ N . c Ɗ a . c Ɗ b . a > b : Ɔ . c 
Ɗ a − b.

c | a  c∧  | b  a > b → c∧  | (a - b)

29. a, b, c, m, n ϵ N . c Ɗ a . c Ɗ b :
Ɔ . c Ɗ ma + nb.

c | a  c∧  | b → c | (ma + nb)

30. a, b, c, m, n ϵ N . c Ɗ a . c Ɗ b . ma > 
nb :
Ɔ . c Ɗ ma − nb.

c | a  c∧  | b  ma > nb → c∧  | (ma - nb)

31. a, b ϵ N . a Ɗ b : Ɔ: a . <  = . b.∪  Proprietatea fundamentală a divizibili-
tății:

Pentru a, b N: dacă a∈  | b, atunci a ≤ b.

Precum, spre exemplu: 6 | 18 și într-ade-
văr 6 ≤ 18.

Dem. Hyp . P11 . P17 . §4 P14 : Ɔ: b/a ϵ
N . a(b/a) = b . a <  = a(b/a) : Ɔ .∪  
Thesis.

Dacă a | b, atunci există un q N astfel∈  
încât b = aq 

Cum q ≥ 1, avem b = aq ≥ a × 1 = a 
Prin urmare, a ≤ b 
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32. a, b ϵ N . a Ɗ b . b Ɗ a : Ɔ . a = b. Dacă două numere se împart reciproc, 
sunt egale:

 ∀ a, b  N: (a∈  | b  b∧  | a) → a = b

Și întrucât domnia sa nu demonstrează 
așa ceva, s-ar putea totuși accepta, că:

Din a | b, există k₁  N cu b = ak₁∈  
 
Din b | a, există k₂  N cu a = bk₂∈  

Substituind: a = (ak₁)k₂ = a(k₁k₂) 

Dacă a ≠ 0, atunci k₁k₂ = 1 

În N, k₁k₂ = 1 ↔ k₁ = k₂ = 1 

Prin urmare: b = a

33. a ϵ N . Ɔ . M ϶ Ɗ a = a. Cel  mai  mare  divizor  al  unui  număr 
este numărul însuși:

 ∀ a  N: max{d  N : d∈ ∈  | a} = a

34. a, b ϵ N . a > b : Ɔ .  Ɗ (a, b) = Ɗ (b, a − 
b).

Pentru a, b N cu a > b: cmmdc(a, b)∈  
= cmmdc(b, a-b)

Aceasta fiind – de fapt  -  proprietatea 
fundamentală a celui mai mare divizor 
comun.

Precum, spre exemplu: 

 a = 15, b = 9

Pasul 1: Calculăm cmmdc(15, 9)

Divizorii lui 15: 1, 3, 5, 15
Divizorii lui 9: 1, 3, 9
Divizorii comuni: 1, 3
cmmdc(15, 9) = 3

Pasul 2: Se aplică formula cmmdc(a, b) 
= cmmdc(b, a-b)

a - b = 15 - 9 = 6
Deci ar trebui ca acum, să se calculeze 
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cmmdc(9, 6)

Pasul 3: Calculăm cmmdc(9, 6)

Divizorii lui 9: 1, 3, 9
Divizorii lui 6: 1, 2, 3, 6
Divizorii comuni: 1, 3
cmmdc(9, 6) = 3

Deci: cmmdc(15, 9) = cmmdc(9, 6) = 3 

Pentru că – pur și simplu - orice divi-
zor comun al lui a și b este și divizor al 
lui (a-b). 
Și invers. 

Iar,  tocmai  această  proprietate  stă  la 
baza  „algoritmului  lui  Euclid  pentru 
calculul cmmdc-ului prin scăderi repe-
tate”.

Deci,  s-ar  putea  continua,  acceptând 
că: 
cmmdc(9,  6)  =  cmmdc(6,  3)  = 
cmmdc(3, 3) = 3.

Dem. Hyp. P28 (1) Demonstrația  (bazată  pe  „algoritmul 
lui Euclid”):
 1. Fie d = cmmdc(a, b) 
 2. Atunci d | a și d | b 
 3. Din d | a și d | b rezultă d | (a-b) 
 4. Prin urmare, d | cmmdc(b, a-b) 
 5. Și în același mod, se demonstrează 
că cmmdc(b, a-b) | d 
 6.  Prin  urmare,  cmmdc(a,  b)  = 
cmmdc(b, a-b)

: Ɔ  x∴  Ɗ a . x Ɗ b : Ɔ: x Ɗ b . x Ɗ (a 
− b)

Hyp. P27 : Ɔ  x∴  Ɗ b . x Ɗ (a − b) : 
Ɔ:
x Ɗ b . x Ɗ (b + (a − b)) : Ɔ: x Ɗ b . x 
Ɗ a

(2)

(1)(2) Ɔ: Hyp. (Th.)

Ɔ  x∴  Ɗ a . x Ɗ b := : x Ɗ b . x D(a − 
b).

35. a, b ϵ N . Ɔ: M Ɗ (a, b) ϵ N.  ∀ a, b  N: cmmdc(a, b)  N∈ ∈
Dem. 1 Ɗ a . 1 Ɗ b : Ɔ: Ɗ (a, b) - =  .∧ (1) Demonstrația domnului Peano:

(1) 1 Ɗ a . 1 Ɗ b : Ɔ: Ɗ (a, b) - = ∧ 
Unu împarte ambele numere, deci exis-
tă divizori comuni

(2) ϶ Ɗ (a, b). ϶ > a := ∧
Există divizori comuni mai mari decât 
a (contradicție logică) 

϶ D (a, b). ϶ > a := ∧ (2)

(1)(2). §3 P3 : Ɔ . Th.
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(3) Din (1)(2). §3 P3 : Ɔ . Th.
Din (1) și (2), prin principiul 3 din sec-
țiunea 3, rezultă teorema 

Sau, într-o traducere contemporană:
 
 1. 1 | a și 1 | b, deci mulțimea divizorilor 
comuni este nevidă 
 
 2. Orice divizor comun este ≤ min(a, 
b), deci mulțimea este mărginită supe-
rior 
 
 3. Prin principiul bunei ordonări, există 
un  element  maximal  → cmmdc(a,  b) 

 N ∈

36. a, b ϵ N . Ɔ . ϶ Ɗ (a, b) = ϶ Ɗ M ϶ Ɗ (a, 
b).

(Eucl. 
VII, 2)

Pentru a, b  N: cmmdc(a,b) este ∈
unicul număr natural d care îndepli-
nește două condiții: 

a. d divide atât pe a, cât și pe b

Și:

b. orice alt divizor comun al lui a și b 
divide pe d.

Așa încât, acesta este „algoritmul lui 
Euclid” pentru determinarea „cmmdc”.

Dem. k = N [c ϵ] (Hp. a < c . b < c : Ɔ . Ts.). (1) Iar, printr-o demonstrație simplificată, 
s-ar putea pleca de la premisa că pentru 
a, b  N, dacă a=q×b+r (cu 0≤r<b), ∈
atunci cmmdc(a,b)=cmmdc(b,r).

Relația a=q×b+r provine din împărțirea 
lui a la b: 

q este câtul împărțirii, un număr întreg 
care arată de câte ori încape b în a. 

r este restul împărțirii, adică ce rămâne 
după ce scazi q×b din a. 

Restul r satisface condiția 0≤r<b, 
Ceea ce înseamnă că este ne-negativ și 
mai mic decât b. 

a ϵ N . b ϵ N . a < 1 . b < 1 := ∧ (2)

(1)(2). Ɔ . 1 ϵ K . (3)

a, b ϵ N . a < c + 1 . b < c + 1 :
Ɔ  a < c . b < c :  : a = c . b < c :∴ ∪  

 :∪
a < c . b = c :  : a = c . b = c .∪  

(4)

c ϵ k . a, b ϵ N . a < c . b < c : Ɔ: Ts. (5)

c ϵ k . a, b ϵ N . a = c . b < c : Ɔ: c ϵ 
k . b < c/pa − b < c . ϵ Ɗ (a, b) = ϶ Ɗ 
(b, a − b) : Ɔ: ϶ Ɗ (b, a − b) = ϶ Ɗ M ϶ 
Ɗ (b, a − b) :
Ɔ: ϶ Ɗ (a, b) = ϶ Ɗ M ϶ Ɗ (a, b) : Ɔ: Ts

(6)

(a, b)[b, a](6) Ɔ . c ϵ k . a, b ϵ N . a < 
c . b = c:

(7)

Ɔ: Ts.
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Și atunci:

Pasul 1: Orice divizor comun al lui a și 
b divide pe r: 

Iar, d un divizor comun al lui a și b, 
adică a=d×x și b=d×y pentru niște 
numere întregi x și y. 

Din relația a=q×b+r, rezultă r=a−q×b. 

Substituind: 
r=d×x−q×(d×y)=d×(x−q×y). 

Deci, d divide pe r, întrucât x−q×y este 
un număr întreg. 

Așadar, orice divizor comun al lui a și 
b este și un divizor al lui r, deci este un 
divizor comun al lui b și r. 

Pasul 2: Orice divizor comun al lui b și 
r divide pe a: 

Fie d′ un divizor comun al lui b și r, 
adică b=d′×z și r=d′×w pentru niște 
numere întregi z și w. 

Din relația a=q×b+r, se substituie: 
a=q×(d′×z)+d′×w=d′×(q×z+w). 

Deci, d′ divide pe a, deoarece q×z+w 
este un număr întreg. 

Așadar, orice divizor comun al lui b și 
r este și un divizor al lui a, deci este un 
divizor comun al lui a și b. 

Așa încât, din ceea ce rezultă în urma 
acestor pași s-ar putea accepta că:
Mulțimea divizorilor comuni ai lui 
(a,b) este identică cu mulțimea 
divizorilor comuni ai lui (b,r). 

Prin urmare, cel mai mare divizor 
comun al lui (a,b) este același cu cel al 
lui (b,r), adică 

c ϵ k . a, b ϵ N . a = c . b = c : Ɔ: ϶ Ɗ 
(a, b) = 
϶ Ɗ c = ϶ Ɗ M ϶ Ɗ c = ϶ Ɗ M ϶ Ɗ (a, 
b) : Ɔ:

(8)

Ts.

(4)(5)(6)(7)(8). Ɔ . c ϵ k . a, b ϵ
N . a < c + 1 . b < c + 1 : Ɔ: Ts.

(9)

(9) Ɔ . c ϵ k . Ɔ . (Ɔ + 1) ϵ k. (10)

(1)(10). Ɔ  c ∴ ϵ N . Hp. a < c . b < c : 
Ɔ: Ts.

(11)

(a + b)[Ɔ](11). Ɔ: Hp. Ɔ . Ts. (Th.)
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cmmdc(a,b)=cmmdc(b,r). 

Iar, algoritmul lui Euclid folosește 
această proprietate în mod repetat. 

În fiecare pas: 
Se calculează r, restul împărțirii lui a la 
b, folosind a=q×b+r. 

Se înlocuiește (a,b) cu (b,r) și se 
continuă procesul. 

Întrucât r<b, resturile scad în fiecare 
pas, iar fiind nenegative (r≥0), procesul 
se oprește când restul devine 0. 

Ultimul rest nenul este cmmdc(a,b). 

Precum spre exemplu:

Pentru a=48, b=18: 

Pasul 1: 48=2×18+12, deci r=12.

Se verifică: 
cmmdc(48,18)=cmmdc(18,12). 
Pasul 2: 18=1×12+6, deci r=6.

Se verifică: 
cmmdc(18,12)=cmmdc(12,6). 
Pasul 3: 12=2×6+0, deci restul e 0. 

Ultimul rest nenul este 6. 

Deci, cmmdc(48,18)=6. 

37. a, b, m ϵ N . Ɔ . M ϵ Ɗ (am, bm) = 
m × M ϶ Ɗ (a, b).

Proprietatea  de  omogenitate  a  celui 
mai mare divizor comun:

 ∀ a, b, m  N: cmmdc(am, bm) = m ×∈  
cmmdc(a, b)

„§7. Theoremata varia.”

§7. Diverse teoreme.

Notația originală Notația  contemporană  reformulată  în 
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limbaj natural

1. a, b ϵ N . a2 + b2 Ɖ7 : Ɔ: a Ɖ7 . b Ɖ7. Dacă 7 împarte suma pătratelor, atunci 
împarte fiecare termen:

 ∀ a, b  N: 7∈  | (a² + b²) → (7 | a  7∧  | b)

2. x ϵ N . Ɔ . x(x + 1) Ɖ 2. Produsul consecutiv este par:

Pentru orice x N: 2∈  | x(x+1)

Precum, spre exemplu: 5 × 6 = 30 = 2 
× 15, deci 2 | 30.

3. x ϵ N . Ɔ . x(x + 1)(x + 2) Ɖ 6. Produsul a trei numere consecutive:

Pentru orice x N: 6∈  | x(x+1)(x+2)

Precum, spre exemplu: 4 × 5 × 6 = 120 
= 6 × 20.

Printre  trei  numere  consecutive,  unul 
este divizibil cu 3. 
Printre trei numere consecutive, cel pu-
țin unul este par.
Prin urmare, produsul este divizibil cu 
2 × 3 = 6 

4. x ϵ N . Ɔ . x(x + 1)(2x + 1) Ɖ 6. Pentru orice număr natural x, produsul 
x(x + 1)(2x + 1) este divizibil cu 6.

 ∀ x  N: 6∈  | x(x + 1)(2x + 1)

Teoremele 5 și 6 - Numere consecutive prime între ele:

5. x ϵ N . Ɔ: x . π . x + 1. Pentru orice număr natural x numerele 
x și x + 1 sunt coprime (adică, cel mai 
mare divizor comun al lor este 1).

Deci,  dacă  x  este  un  număr  natural, 
atunci x și x + 1 nu au divizori comuni 
în afară de 1.

 ∀ x  N: cmmdc(x, x + 1) = 1∈  
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6. x ϵ N . Ɔ: 2x − 1 . π . 2x + 1. Pentru orice număr natural x, numerele 
( 2x - 1 ) și ( 2x + 1 ) sunt coprime (cel 
mai mare divizor comun al lor este 1).

 ∀ x  N: cmmdc(2x - 1, 2x + 1) = 1∈

7. x ϵ N . Ɔ . (2x + 1)2 − 1 Ɖ 8. Pătratul unui număr impar minus 1 este 
întotdeauna divizibil cu 8.

 ∀ x  N: 8∈  | ((2x + 1)² - 1)

8. a ϵ N . a > 1 : Ɔ  Np . ∴ ϶ > 1 . ϶ Ɗ a : - 
= ∧

(Eucl. 
VII, 31)

Teorema Fundamentală a Aritmeticii - 
versiunea lui Euclid

Orice număr natural > 1 are un divizor 
prim (Euclid VII, 31).

 ∀ a  N, a > 1:  p  : p∈ ∃ ∈ ℙ  | a

9. a, b ϵ N  b 2 > a  ∴ ∴ ϶ Ɗ a . ϶ > 1 . ϶ < 
b := 

Testul de primalitate:

 ∀ a  N: (∈  ∀ d  N: 1 < d < √a → d ∈ ∤ 
a) → a  ∈ ℙ

Dacă a nu are divizori proprii mai mici 
ca √a și  mai mari ca 2, atunci a este 
prim.

 :: Ɔ . a ∧ ϵ Np .

Teoremele 10-11 - Proprietățile numerelor prime

10. a, b ϵ N . a ϵ Np . a - Ɗ b : Ɔ: a π b (Eucl. 
VII, 29)

Dacă a și b sunt numere naturale, a este 
un număr prim, și a nu divide b, atunci 
a și b sunt coprime.

 ∀ a, b  N: (a    a  b) → cm∈ ∈ ∧ℙ ∤ -
mdc(a, b) = 1

11. a, b, c ϵ N . a Ɗ bƆ . a π b : Ɔ . a Ɗ c. Dacă a, b, c sunt numere naturale, dacă 
a divide b și a este coprim cu b, atunci 
a divide c.

 ∀ a, b, c  N: (a∈  | bc  cmmdc(a, b) =∧  
1) → a | c

12. a, b ϵ N . m = M ϶ Ɗ (a, b) : Ɔ: a/m π . 
b/m.

Dacă a,  b  sunt  numere  naturale  și  m 
este cel mai mare divizor comun al lui 
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a și b, atunci a/m și b/m sunt coprime.

 ∀ a, b  N: Dacă m = cmmdc(a, b),∈  
atunci cmmdc(a/m, b/m) = 1

13. a ϵ Np . b, c ϵ N . a Ɗ bc : Ɔ:
a Ɗ b .  . a∪  Ɗ c. 

(Eucl. 
VII, 30)

Dacă un număr prim p divide produsul 
b × c, atunci p divide pe b sau p divide 
pe c.

Pentru a  , b, c  N: ∈ ∈ℙ
dacă a | b×c, atunci a | b sau a | c

14. a ϵ Np . b, n ϵ N : Ɔ: a Ɗ bn . = . a Ɗ b. (Eucl. 
IX, 12)

Dacă p este prim iar n și p sunt numere 
naturale, atunci p divide pe b×n dacă și 
numai dacă p divide pe b.

 ∀ p  , ∈ ℙ  ∀ b  N, ∈  ∀ n  N: p | b×n∈  
↔ p | b

15. a, b, c ϵ N . a π b . c Ɗ a : Ɔ: c π b. (Eucl. 
VII, 23)

Dacă a, b și c sunt numere naturale, a 
și  b  sunt  coprime  și  c  divide  pe  a, 
atunci c și b sunt coprime.

Deci, dacă: cmmdc(a, b) = 1 și c |  a, 
atunci cmmdc(c, b) = 1.

 ∀ a, b, c  N: cmmdc(a, b) = 1  c | a∈ ∧  
→cmmdc(c, b) = 1

16. a, b, c ϵ N . Ɔ  a π b . a π c := : a π bc∴  
. 

(Eucl. 
VII, 24)

Dacă a este coprim cu b și cu c, atunci 
a este coprim cu produsul b×c.

Adică:
cmmdc(a,  b) = 1 și  cmmdc(a,  c)  = 1 
dacă și numai dacă cmmdc(a, b×c) = 1.

 ∀ a, b, c  N: cmmdc(a, b) = 1  cm∈ ∧ -
mdc(a, c) = 1 → cmmdc(a, b×c) = 1

17. a, b, c ϵ N . b π c . b Ɗ a . c Ɗ a : Ɔ . bc 
Ɗ a.

a, b, c  N : (cmmdc(b,c) = 1  b | a∀ ∈ ∧  
 c | a) → b×c | a∧

Pentru  orice  numere  naturale  a,  b,  c, 
dacă b și c sunt prime între ele (copri-
me), și b divide pe a, și c divide pe a, 
atunci produsul b×c divide pe a.

133

https://esteticademersurilorinutile.com/
https://esteticademersurilorinutile.com/


                                    esteticademersurilorinutile.gmail.com
                                    esteticademersurilorinutile.com   

Deci, dacă două numere coprime divid 
ambele un al treilea număr, atunci pro-
dusul lor divide și el acel număr.

18. a, b, c ϵ N pa π b : Ɔ: ϶ Ɗ (ac, b) = ϶ Ɗ 
(c, b).

Dacă a, b și c sunt numere naturale și a 
este coprim cu b, atunci cel mai mare 
divizor comun al lui a ori c și b este 
egal cu cel mai mare divizor comun al 
lui c și b.

Dacă 
a,b,c N∈  și cmmdc(a,b)=1, atunci cm-
mdc(ac,b)=cmmdc(c,b)

„pa” este o notație specială, creată de 
domnul Peano, probabil pentru a sim-
boliza relația de coprimalitate.

În acest context, pa π b s-ar putea tra-
duce ca „a este prim cu b”.

Iar, așa ceva înseamnă că cele două nu-
mere, a și b, nu au divizori comuni, cu 
excepția numărului 1. 

Altfel  spus,  cel  mai  mare divizor  co-
mun al lor este egal cu 1.

Teoremele 19-21 - Cel mai mic multiplu comun:

19. a, b ϵ N . Ɔ . W ϶ Ɖ (a, b) ϵ N. Dacă  a  și  b  sunt  numere  naturale, 
atunci există un unic cel mai mare divi-
zor al lui a și b, care este un număr na-
tural.

 ∀ a, b  N: cmmmdc(a, b)  N∈ ∈

20. a, b ϵ N . Ɔ . W ϶ Ɖ (a, b) = ab/M ϶ Ɗ 
(a, b).

(Eucl. 
VII, 34)

Produsul  dintre  cel  mai  mare  divizor 
comun și cel mai mic multiplu comun 
a două numere naturale este întotdeau-
na egal cu produsul celor două numere.

 ∀ a,  b   N:  cmmdc(a,b)  ×∈  
cmmmc(a,b) = a × b

21. a, b, c ϵ N . Ɔ Ɖ a . c Ɖ b : Ɔ: c Ɗ W ϶ 
Ɗ (a, b).

(Eucl. 
VII, 35)

Dacă c  divide  pe  a  și  c  divide  pe  b, 
atunci c divide pe cmmdc(a, b).
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 ∀ a, b, c  N: c | a  c | b ∈ ∧ → c | cm-
mdc(a, b)

22. x ϵ N . x < 41 : Ɔ . 41 − x + x2 ϵ Np. Dacă x este un număr natural mai mic 
decât  41,  atunci  valoarea  expresiei 
41−x+x2 este un număr prim.

x  , x < 41 ∀ ∈ ℕ → (41 - x + x²)  P∈

23. M . Np := ∧ (Eucl. 
IX, 20)

Prin definiție, faptul că numerele prime 
sunt infinit de multe este adevărat.

Deci: „Infinitatea numerelor prime”:

| | = ₀ℙ ℵ

Cardinalitatea mulțimii numerelor pri-
me este numerabilă și infinită.

Mulțimea numerelor prime este infinită 

Iar,  considerând demonstrația  domnu-
lui Euclid: 

Presupunem că  există  doar  un  număr 
finit de numere prime: p₁, p₂ ... p . ₙ

Considerăm N = p₁ × p₂ × ... × p  + 1.ₙ  

N nu este  divizibil  cu niciunul  dintre 
p₁, p₂ ... p . ₙ

Prin urmare, N are un divizor prim q 
care nu este în „listă”.

Doar că, așa ceva reprezintă o contra-
dicție - deci există infinit de multe nu-
mere prime.

23. n ϵ Np . a ϵ N . a - Ɖ n : Ɔ . an−1 − 1 Ɖ 
n.

(Fermat) Dacă n este un număr prim și a este un 
număr natural care nu este divizibil cu 
n, atunci a la puterea n-1 minus 1 este 
divizibil cu n.

n P∀ ∈   a N∀ ∈  (n a→n (an−1−1))∤ ∣
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De fapt, aceasta reprezintă „Mica Teo-
remă a lui Fermat” și se referă la pro-
prietatea numerelor întregi în relație cu 
un număr prim: a(n-1) - 1 este divizibil 
cu n.

Și este folosită în criptografie și în teo-
ria numerelor.

„§8. Numerorum rationes.

Explicationes.

Si p, q ϵ N , tunc 
p
q

 legitur ratio numeri p numero q. Signum  legitur duorum numerorumℝ  

ratio, et indicat numeros rationales positivos.

Definitiones.”

§8. Raporturile numerelor.

Explicații.

Dacă p, q aparțin lui N (mulțimea numerelor naturale) atunci 
p
q

 se citește raportul numărului 

p cu numărul q. Simbolul  (actualmente ) se citește raportul a două numere și indică numereleℝ ℚ  
raționale pozitive.

Definiții.

Notația originală Interpretare contemporană

1. m, p, q ϵ N . Ɔ . m 
p
q

 = 
mp
q

Multiplicarea cu un număr natural:

m, p, q  N  m(p/q) = (m×p)/q∈ ⊃

Pentru orice numere naturale m, p, q,  produsul 
unui număr natural m cu o fracție p/q este egal cu 
fracția (m×p)/q.

Precum, spre exemplu: 3 × (2/5) = (3 × 2)/5 = 
6/5

2. p, q, p' q' ϵ N . Ɔ :: 
p
q

 = 
p'
q'

 . =  x∴  ϵ

N . x 
p
q

 , x 
p'
q'

 ϵ N : Ɔx . x 
p
q

 = x 
p'
q'

Egalitatea fracțiilor

p, q, p',  q'  N  (p/q) = (p'/q') ≡  x  N:∈ ⊃ ∃ ∈  
x(p/q) x(p'/q')  N  x(p/q) = x(p'/q')∈ ∧

Două fracții p/q și p'/q' sunt egale dacă și numai 
dacă există un număr natural x astfel că atât x × 
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(p/q) cât și x × (p'/q') sunt numere naturale și x × 
(p/q) = x × (p'/q').

De fapt, două fracții sunt egale dacă „produsele 
încrucișate” sunt egale: p/q = p'/q' ↔ p × q' = p' 
× q

Precum, spre exemplu: 2/3 = 4/6 pentru că 2 × 6 
= 3 × 4 = 12

3.  = :: [x  ℝ ϵ]  p, q  ∴ ϵ N .  
p
q

 = x : - = 

 .∧

Mulțimea numerelor raționale pozitive

ℚ⁺= {x |  p, q  N: p/q = x}∃ ∈

Mulțimea  (numerele raționale pozitive) esteℚ⁺  
formată din toate elementele care pot fi reprezen-
tate ca rapoarte p/q unde p, q sunt numere natura-
le.

4. p ϵ N . Ɔ . 
p
1

 = p. Identificarea numerelor naturale cu fracțiile

p  N  p/1 = p∈ ⊃

Orice  număr  natural  p  poate  fi  reprezentat  ca 
fracția p/1, identificând astfel numerele naturale 
cu o submulțime a numerelor raționale.

„Theoremata.”

Teoreme.

Notația originală Notația  contemporană  reformulată  în 
limbaj natural

5. p, q, p', q' ϵ N . Ɔ:: 
p
q

 = 
p'
q'

 . = . pq' = 

p'q.

(Eucl. 
VII, 19)

Criteriul de egalitate (Euclid VII, 19)

Pentru p, q, p', q'  N: p/q = p'/q' ↔ p∈  
× q' = p' × q
 
Precum, spre exemplu:
 6/8 = 3/4 pentru că 6 × 4 = 8 × 3 = 24 
 15/20 = 3/4 pentru că 15 × 4 = 20 × 3 
= 60 

Dem. Hp. 
p
q

 = 
p'
q'

 : Ɔ  qq' , qq' ∴ p
q

 , qq' 
p'
q'

 ϵ 

N . p2

(1)  1.  Sensul  direct:  Dacă  p/q  =  p'/q', 
atunci  multiplicând  cu  qq'  se  obține: 
qq' × (p/q) = qq' × (p'/q') deci pq' = p'q 

 2. Sensul invers: Dacă pq' = p'q, atunci  Ɔ  qq' ∴ ∴ p
q

 = qq' 
p'
q'

 . qq' 
p
q

 = pq' . 
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qq' 
p'
q'

 = 

p' q  Ɔ  pq' = p' q.∴ ∴

pentru orice x  N: x × (p/q) × qq' = x∈  
× pq' = x × p'q = x × (p'/q') × qq', deci 
x × (p/q) = x × (p'/q') 

 
 

Hp. pq' = p' q  Ɔ  x ∴ ∴ ϵ N . x
p
q

 , x
p'
q'

 

ϵ N : Ɔx :

(2)

xp' q' = xp' q : Ɔ: (x 
p
q

 )qq' = (x 
p'
q'

 )qq' 

: Ɔ:

x 
p
q

 = x 
p'
q'

 .

(1)(2). Ɔ . Th.

6. m, p, q ϵ N . Ɔ . 
p
q

 = 
mp
mq

 . (Eucl. 
VII, 17)

Amplificarea fracțiilor (Euclid VII, 17)

Pentru m, p, q  N: p/q = (m × p)/(m∈  
× q)

Multiplicând numărătorul și numitorul 
unei fracții cu același număr natural di-
ferit  de zero, fracția rămâne neschim-
bată.

Precum, spre exemplu:
 2/3 = 4/6 = 6/9 = 8/12 
 5/7 = 15/21 = 25/35 

7. p, q ϵ N . m ϵ N . m Ɗ p . m Ɗ q : Ɔ . 
p
q

 = 
p /m
q /m

.

Simplificarea fracțiilor

Pentru p, q  N și m  N cu m | p și∈ ∈  
m | q: p/q = (p/m)/(q/m)

Dacă un număr natural  m divide atât 
numărătorul cât și numitorul unei frac-
ții, fracția poate fi simplificată prin îm-
părțirea ambilor termeni la m.

Precum, spre exemplu:
 12/18 = 6/9 = 2/3 (împărțind la 6) 
 15/25 = 3/5 (împărțind la 5) 

8. p, q, p' , q' ϵ N . p π q . p' π q' . 
p
q

 = 
p'
q'

 : Ɔ: p = p' . q = q'.

Fracții ireductibile:

Pentru p, q, p', q'  N cu cmmdc(p, q)∈  
= cmmdc(p',  q') = 1: dacă p/q = p'/q' 
atunci p = p' și q = q'
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Fracțiile ireductibile (în forma cea mai 
simplă) au o reprezentare unică.

9. p, q, p', q' ϵ N . p' π q' . 
p
q

 = 
p'
q'

 : Ɔ: p'/p 

= 
q'/q = m ϶ Ɗ (p, q).

Proporționalitatea:

Pentru p, q, p', q'  N cu cmmdc(p',∈  
q') = 1 și p/q = p'/q': p'/p = q'/q = m 
unde m divide cmmdc(p, q)

Dacă două fracții sunt egale și una este 
ireductibilă,  atunci  cealaltă  se  obține 
prin amplificare cu un factor comun.

Precum spre exemplu:

Dacă 6/9 = 2/3, atunci 2/6 = 3/9 = 1/3 
(factorul m = 3)

10. p, q, p' , q' ϵ N . 
p
q

 = 
p'
q'

 . p π q . q' < 

q :=  .∧

(Eucl. 
VII, 21)

Unicitatea  reprezentării  ireductibile 
(Euclid VII, 21)

Pentru p, q, p', q'  N: dacă p/q = p'/q',∈  
cmmdc(p, q) = 1 și q' < q, atunci apare 
o contradicție.

Prin  urmare,  „fracția  ireductibilă”  are 
numitorul cel mai mic dintre toate re-
prezentările echivalente.

11. p, q, p', q' ϵ N : Ɔ: 
p
q

 = 
p'
q'

 . = . 
p
q'

 = 
p
q'

 

. = 

(Eucl. 
VII, 13)

Regula  celor  trei  reprezentări  (Euclid 
VII, 13)

Pentru p, q, p', q'  N: p/q = p'/q' ↔∈  
p/p' = q/q' ↔ p/q = p'/q’

Trei  forme  echivalente  de  a  exprima 
proporționalitatea.

Precum, spre exemplu: 6/8 = 9/12 ↔ 
6/9 = 8/12 ↔ 6 × 12 = 9 × 8 = 72

. 
p
q

 = 
q'
p'

 .

12. p, q ϵ N . Ɔ:: [M ϵ] : m ϵ N . m 
p
q

 N ∴ 

- = 

Existența multiplilor întregi:

Pentru p, q  N:  m  N astfel încât∈ ∃ ∈  
m × (p/q)  N∈.∧
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Orice fracție, multiplicată cu un număr 
natural suficient de mare, dă un număr 
natural.

Precum, spre exemplu: 

Pentru 2/3, dacă m = 3, se obține 3 × 
(2/3) = 2  N∈

12’. a ϵ  . Ɔ:: [m ℝ ϵ] : m ϵ N . ma ϵ N  - =∴  
.∧

Versiunea generală

Pentru a  :  m  N astfel încât m∈ ∃ ∈ℚ⁺  
× a  N∈

13. p, q, p', q' ϵ N . Ɔ:: [(r, s, l) ϵ] : r, s, t ϵ

N . 
p
q

 = 
r
t

 . 
p'
q'

 = 
s
t

  - =  .∴ ∧

Reducerea la același numitor (pentru 2 
fracții)

Pentru p, q, p', q'  N:  r, s, t  N∈ ∃ ∈  
astfel încât:

 p/q = r/t și p'/q' = s/t

Orice două fracții pot fi aduse la ace-
lași numitor.

Precum spre exemplu:
 2/3 și 3/4 → 8/12 și 9/12

13’. a, b ϵ  . Ɔ:: [(r, s, t) ℝ ϵ] : r, s, t ϵ N . a = 
r
t

 . b = 
s
t

  - = ∴ ∧

Versiunea generală:

Pentru a, b  :  r, s, t  N astfel∈ ∃ ∈ℚ⁺  
încât a = r/t și b = s/t

14. a, b, c ϵ  . Ɔ:: [(m, n, p, ) ℝ ℚ ϵ] : m, n, 
p, q ϵ

Reducerea la același numitor (pentru 3 
fracții)

Pentru a, b, c  :  m, n, p, q  N∈ ∃ ∈ℚ⁺  
astfel încât a = m/q, b = n/q, c = p/q

Orice număr finit de fracții poate fi re-
dus la același numitor.

N . a = 
m
q

 . b = 
n
q

 . c = 
p
q

  - = ∴ ∧

15. p, q, r ϵ N . a = 
p
r

 . b = 
q
r

 : Ɔ: a = b . = 

. p = 

Regula simplificării:

Pentru p, q, r  N cu a = p/r și b = q/r:∈  
a = b și p = qq.
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Fracțiile cu același numitor sunt egale 
dacă și numai dacă au același numără-
tor.

16. m ϵ N . a, b ϵ  . a = b . ma ℝ ϵ N : Ɔ . 
mb ϵ N.

Conservarea proprietății de număr na-
tural:

Pentru m  N și a, b  : dacă a = b∈ ∈ ℚ⁺  
și m × a  N, atunci m × b  N∈ ∈

Proprietățile  aritmetice  se  conservă 
prin egalitate.

17. a, b, c ϵ  . Ɔ  a = aℝ ∴
Ɔ  a = b . = . b = a.∴
Ɔ  a = b . b = c : Ɔ . a = c.∴  

Proprietățile relației de egalitate:

Pentru a, b, c  :∈ ℚ⁺

 Reflexivitatea: a = a 
 Simetria: a = b ↔ b = a 
 Tranzitivitatea: a = b  b = c → a = c∧  

Egalitatea pe  este o relație de echiℚ⁺ -
valență.

18. N Ɔ  .ℝ Includerea numerelor naturale:

 N  ⊆ ℚ⁺

Numerele naturale formează o submul-
țime a numerelor raționale pozitive.

„Definitiones.” 

Definiții

Notația originală Interpretare contemporană

19. a, b ϵ  . Ɔ:: a < b . =  x ℝ ∴ ϵ N . xa, xb 
ϵ N :
Ɔ . xa < xb.

Relația „mai mic”:

Pentru a, b    a < b ≡  x  N: x×a, x×b∈ ⊃ ∃ ∈ℚ⁺  
 N  x×a < x×b∈ ∧

Pentru numerele raționale pozitive a și b, spunem 
că a < b dacă există un număr natural x astfel că 
atât x×a cât și x×b sunt numere naturale și x×a < 
x×b.

20. a, b ϵ  . Ɔ: b > a . = . a < b.ℝ Relația „mai mare”:
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Pentru a, b  : b > a ≡ a < b∈ ℚ⁺

„Theoremata”

Teoreme

Notația originală Notația  contemporană  reformulată  în 
limbaj natural

21. p, q, r ϵ N . a = 
p
r

 . b = 
q
r

 : Ɔ: a < b . = 

. p < q.

Comparația fracțiilor cu același numi-
tor:

Pentru p, q, r  N și a = p/r, b = q/r: a∈  
< b ↔ p < q

Precum, spre exemplu:
 3/7 < 5/7 pentru că 3 < 5 
 11/13 > 8/13 pentru că 11 > 8 

22. p, q, p', q' ϵ N . Ɔ: 
p
q

 < 
p'
q'

 . = . pq' < p' 

q.

Criteriul general de comparare

Pentru p, q, p', q'  N: p/q < p'/q' ↔ p∈  
× q' < p' × q

Regula  generală  pentru  compararea 
fracțiilor.

23. p, q, r ϵ N . a = 
r
p

 . b = 
r
q

 : Ɔ: a < b . = 

. p > q.

Compararea cu numitori invers propor-
ționali:

Pentru p, q, r  N cu a = r/p și b = r/q:∈  
a < b ↔ p > q

Pentru fracții cu același numărător, cea 
cu numitorul mai mare este mai mică.

Precum, spre exemplu:
5/8 < 5/6 pentru că 8 > 6

24. p, q, p', q'  ϵ N .  
p
q

 <  
p'
q'

 : Ɔ .  
p'
q'

 < 

p+p'
q+q'

 < 
p'
q'

.

Proprietatea  densității  (forma  fracții-
lor):

Pentru p, q, p', q'  N cu p/q < p'/q':∈  
p/q < (p+p')/(q+q') < p'/q'

Între orice două numere raționale dis-
tincte există întotdeauna alt număr ra-
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țional (proprietatea densității).

Precum, spre exemplu: 

Între 1/3 și  1/2 se află  (1+1)/(3+2) = 
2/5 și într-adevăr: 1/3 < 2/5 < 1/2

25. a ϵ  . Ɔ  ? . ℝ ∴ ϶ > a : - =  .∧ Proprietatea lui Arhimede (partea I-a):

Pentru a  :  b   astfel încât b∈ ∃ ∈ℚ⁺ ℚ⁺  
> a

 nu are un element maximal.ℚ⁺

Și deși domnia sa nu demonstrează asa 
ceva, s-ar putea presupune totuși că:

Să  presupunem prin  absurd  că  există 
un număr rațional pozitiv maximal m 

 .  Atunci  pentru  orice  a   ,∈ ∈ℚ⁺ ℚ⁺  
avem a ≤ m.

Dar, se poate construi numărul m' = m 
+ 1. Evident:

m'    (întrucât  reprezintă  suma a∈ ℚ⁺  
două numere raționale pozitive)

m' = m + 1 > m

Iar, asa ceva contrazice faptul că m ar 
fi maximal. 
Prin  urmare,  nu  poate  exista  un  ele-
ment maximal în .ℚ⁺

26. a ϵ  . Ɔ   . ℝ ℝ∴ ϶ < a : - =  .∧ Proprietatea lui Arhimede (partea II-a):

Pentru a  :  b   astfel încât b∈ ∃ ∈ℚ⁺ ℚ⁺  
< a

 nu are element minimal.ℚ⁺

Și deși nici asa ceva nu demonstrează 
domnia  sa,  s-ar  putea  presupune  in 
continuare că:

Există un element minimal m  .∈ ℚ⁺  
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Atunci pentru orice a  , avem m ≤∈ ℚ⁺  
a.

Dar s-ar putea construi m/2.
Și desigur, m/2   (întrucât repre∈ ℚ⁺ -
zintă  împărțirea  unui  număr  rațional 
pozitiv la 2)

Doar că, m/2 < m ceea ce conduce spre 
o contradicție! 
Deci nu poate exista un element mini-
mal.

Iar, zero ... nu este acceptat.

27. a, b ϵ  . a < b : Ɔ   . ℝ ℝ∴ ϶ > a . ϶ < b : 
- = ∧

Densitatea numerelor raționale:

Pentru a, b   cu a < b:  c  ∈ ∃ ∈ℚ⁺ ℚ⁺ 
astfel încât a < c < b

Între orice două numere raționale dis-
tincte există întotdeauna un alt număr 
rațional.

28. a, b ϵ  : Ɔ  a < b . a = b :=  .ℝ ∴ ∧
Ɔ  a > b . a = b := ∴ ∧
Ɔ  a < b . a > b :=  .∴ ∧
Ɔ  a - < b . a - = b . a - > b :=  .∴ ∧

Tricotomia și incompatibilitatea:

Pentru a, b  :∈ ℚ⁺

 Nu poate fi simultan a < b și a = b 
 Nu poate fi simultan a > b și a = b 
 Nu poate fi simultan a < b și a > b 
 Exact una dintre relațiile a < b, a = b, a 
> b este adevărată 

Relația de ordine pe  este „perfecℚ⁺ -
tă”.

29. a, b, c ϵ  : Ɔ  a <  = b . b < c : Ɔ:ℝ ∴ ∪  
a < c . 
Ɔ  a < b . b <  = c : Ɔ: a < c.∴ ∪  

Tranzitivitatea ordinii:

Pentru a, b, c  :∈ ℚ⁺
 a ≤ b  b < c → a < c ∧
 a < b  b ≤ c → a < c ∧

Relația de ordine este tranzitivă.

„Definitiones.” 
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Definiții.

Notația originală Interpretare contemporană

30. a, b ϵ  . Ɔ . a + b = [c ℝ ϵ](c ϵ   x ℝ ∴ ϵ 
N . xa, xb, xc ϵ
N : Ɔx . xa + xb = xc).

Adunarea.

Suma a două numere raționale pozitive a și b este 
acel număr rațional pozitiv c, astfel încât pentru 
orice număr natural x care face x×a, x×b și x×c 
numere naturale, x×a + x×b = x×c.

Cu alte cuvinte: 
Dacă a+b=c atunci există un număr natural x ast-
fel încât: x×a + x×b = x×c.

Precum spre exemplu, pentru a aduna 1/2 și 1/3, 
se găsește un numitor comun, de exemplu x=6. 

Și atunci:
 6×(1/2)+6×(1/3)=6×(c)→3+2=6c→5=6c→c=5/
6.

31. a, b ϵ  . Ɔ:: b − a =  [x ℝ ∴ ϵ](x ϵ  . aℝ  
+ x = b).

Scăderea.

Diferența b - a este acel număr rațional pozitiv x 
pentru care a + x = b.

Cu alte cuvinte:

Diferența dintre b și a este acel număr real care, 
adunat la a, îl „produce” pe b.

Precum, spre exemplu, să presupunem că vrem 
să calculăm 5/6−1/3.

Conform definiției domnului Peano, se căută un 
număr rațional x astfel încât:
1/3+x=5/6

Și  se  caută  un  numitor  comun  pentru  toate 
fracțiile, în acest caz, 6.

Înmulțim întreaga ecuație cu 6:
6×(1/3+x)=6×(5/6)
6×(1/3)+6×x=5
2+6×x=5

Și se obține o ecuație cu numere întregi (numere 
naturale). 
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6x=5−2
6x=3
x=3/6
x=1/2

Astfel,  conform  definiției  domnului  Peano, 
5/6−1/3=1/2, întrucât 1/3+1/2=5/6.

32. a, b ϵ  . Ɔ . ab = [c ℝ ϵ](c ϵ   x ℝ ∴ ϵ N . 
xa, (xa)b, xc ϵ
N : Ɔx . (xa)b = xc).

Înmulțirea.

Produsul a două numere raționale pozitive a și b 
este  acel  număr  rațional  pozitiv  c,  care  pentru 
orice număr natural x, face ca: x×a×b = x×c.

Precum spre  exemplu,  pentru  a  înmulți  2/3  cu 
3/4, se căutăm un x, care să facă x × (2/3) și (x × 
(2/3)) × (3/4) numere întregi. 

Deci, pentru x=6, avem 6×(2/3)=4. 

Apoi, 4×(3/4)=3. 

Rezultatul  este  un  număr  natural,  iar  ecuația 
domnului  Peano  devine  3=6×c,  de  unde 
c=3/6=1/2.

33. a, b ϵ  . Ɔ . b/a = [x ℝ ϵ](x ϵ  . ax = b).ℝ Împărțirea.

Pentru numerele raționale pozitive a și b, „câtul” 
b/a este acel număr rațional pozitiv x pentru care 
a×x = b.

Precum spre exemplu, să presupunem că vrem să 
calculăm (2/3)/(1/2).

Conform definiției domnului Peano, se căută un 
număr rațional x astfel încât:
(1/2)×x=2/3

Pentru  a  rezolva  ecuația,  se  înmulțesc  ambele 
părți ale acesteia cu inversul lui 1/2, adică cu 2/1 
(sau 2).

2×(1/2×x)=2×(2/3)
(2×1/2)×x=4/3
1×x=4/3
x=4/3
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Și  astfel,  conform  definiției  domnului  Peano, 
(2/3)/(1/2)=4/3, întrucât (1/2)×(4/3)=4/6=2/3.

„Theoremata”

Teoreme.

Notația originală Notația  contemporană  reformulată  în 
limbaj natural

34. p, q, r ϵ N . Ɔ 
p
r

 + 
q
r

 = 
p+q

r
 . Adunarea fracțiilor cu același numitor:

Pentru p, q, r  N: p/r + q/r = (p+q)/r∈

35. a, b ϵ  . Ɔ . a + b ℝ ϵ  .ℝ „Închiderea la adunare”:

Pentru a, b  : a + b  ∈ ∈ℚ⁺ ℚ⁺

36. p, q, r ϵ N . p < q : Ɔ . 
q
r

 − 
p
r

 = 
q−p

r
. Scăderea fracțiilor cu același numitor:

Pentru p, q, r  N cu p < q : q/r - p/r =∈  
(q-p)/r

37. a, b ϵ  . a < b : Ɔ . b − a ℝ ϵ  .ℝ „Închiderea la scădere”:

Pentru a, b   cu a < b: b - a  ∈ ∈ℚ⁺ ℚ⁺

38. p, q, p', q' ϵ N . Ɔ . 
p
q

 
p'
q'

 = 
pp'
qq'

 . Înmulțirea fracțiilor:

Pentru p, q, p', q'  N: (p/q) × (p'/q') =∈  
(p×p')/(q×q')

39. a, b ϵ  . Ɔ . ab ℝ ϵ .ℝ „Închiderea la înmulțire”:

Pentru a, b  : a × b  ∈ ∈ℚ⁺ ℚ⁺

40. p, q, p', q' ϵ N . Ɔ . 
p
q

 / 
p'
q'

 = 
pq'
p'q

. Împărțirea fracțiilor:

Pentru p, q, p', q'  N: (p/q) / (p'/q') =∈  
(pq')/(p'q)

41. a, b ϵ  . Ɔ . b/a ℝ ϵ  .ℝ „Închiderea la împărțire”:

Pentru a, b  : b/a  ∈ ∈ℚ⁺ ℚ⁺
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42. p, q ϵ N . Ɔ . 
p
q

 = 
p
q

. „Reflexivitatea” ...

Pentru p, q  N: p/q = p/q∈

“§9. Rationalum systemata. Irrationales. 

Explicatio.

Si a ϵ K  , signum Ta legitur terminus summus, vel limes summus classis a.ℝ
Supra hoc novum ens relationes ac operationes tantum definimus.

Definitiones.”

§9. Sisteme de numere raționale. Numere iraționale.

Explicație.

Dacă a K  (actualmente  ), semnul Ta se citește limită superioară (sau termen superior)∈ ℝ ℚ  
sau limită superioară a clasei a.

Asupra acestei noi entități, definim doar relații și operații.

Definiții.

Notația originală Interpretare contemporană

1. a ϵ K  . x ℝ ϵ  : Ɔ:: x < Ta . =  a . >ℝ ∴  
x : - =  .∧

Pentru a  K  și x   : dacă x < Ta, atunci∈ ∈ℚ ℚ  
există elemente în a mai mari decât x

 ∀ x < sup(a) →  y  a : y > x∃ ∈
2. a ϵ K  . x ℝ ϵ  : Ɔ::: x = Ta . = : . : a .ℝ  

> x :=  :: u ∧ ϵ  . u < x : Ɔx  a . > uℝ ∴  
: - =  .∧

Pentru a  K  și x   : x = Ta, dacă și numai∈ ∈ℚ ℚ  
dacă pentru orice u < x există elemente în a mai 
mari decât u

x = sup(a) ↔  ∀ u < x →  y  a : y > u∃ ∈
3. a ϵ K  . x ℝ ϵ  : Ɔ  x > Ta . = :ℝ ∴

x - <  . x - = .
Pentru a  K  și x   : dacă x > Ta, atunci x∈ ∈ℚ ℚ  
≠  Ta

x > sup(a) → x ≠ sup(a)

„Theoremata.”

Teoreme.

Notația originală Notația  contemporană  reformulată  în 
limbaj natural

4. x ϵ  . Ɔ:: x =  T :  . ℝ ℝ∴ ϶ < x. Formula Russell:
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Pentru x   există T:  astfel încât T∈ ℚ ℚ  
< x

„Explicatio.

Signum  legitur quantitas, numerosque indicat reales positivos, rationales aut irrationales,ℚ  
0 et ∞ exceptis.

Definitiones.”

Explicație.

Simbolul  (actualmente  ) se citește „cantitate” și reprezintă numere reale pozitive, rațioℚ ℝ -
nale sau iraționale, cu excepția lui 0 și ∞ (infinit).

Definiții.

Notația originală Interpretare contemporană

5.  = [x ℚ ϵ](a ϵ K  : a - =  :  ℝ ℝ∧ ϵ
>  . - =  :  = x  - =  ).∧ ∴ ∧

 este mulțimea elementelor x pentru care existăℝ  
o clasă a nevidă din  astfel încât Ta = xℚ

 = {sup(a) : a  , a ≠ , a mărginită superiℝ ℚ⊆ ∅ -
or}

6. a, b ϵ  . Ɔ:: a = b . =   . ℚ ℝ∴ ϶ < a := :
 . ℝ ϶ < b

Pentru a, b  : a = b dacă și numai dacă pentru∈ℝ  
orice x , x < a este echivalent cu x < b∈ℚ

a = b ↔ (-∞, a) = (-∞, b)

7. a, b ϵ  . Ɔ:: a < b . =   . ℚ ℝ∴ ϶ > a . ϶ < 
b :
- = ∧

Pentru a, b  : a < b dacă și numai dacă există∈ℝ  
x , cu a < x < b∈ℚ

a < b ↔  x   : a < x < b∃ ∈ ℚ
8. a, b ϵ  . Ɔ: b > a . = . a < bℚ Definiția standard a inegalității:

Pentru a, b  : b > a este echivalent cu a < b∈ℝ

„Theoremata”

Teoreme.

Notația originală Notația  contemporană  reformulată  în 
limbaj natural

9. a ϵ  . Ɔ   . < a : - = ℚ ℝ∴ ∧ Pentru a , există numere reale mai∈ℝ  
mici decât a

10. a ϵ  . Ɔ   . > a : - =  .ℚ ℝ∴ ∧ Pentru a , există numere reale mai∈ℝ  
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mari decât a

11.  Ɔ  .ℝ ℚ  este inclus în .ℚ ℝ

Subsistunt quoque propositiones quae a P17, 28, 29 in §8 obtinentur, si loco  legatur  .ℝ ℚ

Definitiones. 

Desigur, propozițiile care se obțin din P17, 28, 29 în §8 rămân tot atât de valide, dacă în lo-
cul lui  se citește .ℝ ℚ

Definiții.

Notația originală Interpretare contemporană43

12. a, b ϵ  . Ɔ . a + b = T [z ℚ ϵ]([(x, y) ϵ] : 
x, y ϵ

 . x < a . y < b . x + y = z  - =  ).ℝ ∴ ∧

Pentru orice a, b ϵ   și pentru orice x, y ℝ ϵ   ℚ

Suma a + b = supremum-ul mulțimii {x + y : x < 
a, y < b}

Sau:

a + b = sup{x + y : x  (-∞, a) y  (-∞, b)}∈ ∈
13. a, b ϵ  . Ɔ . ab = T [z ℚ ϵ]([(x, y) ϵ] : x, y 

ϵ
 . x < a . y < b . xy = z  - =  ).ℝ ∴ ∧

Pentru orice a, b ϵ   și pentru orice x, y ℝ ϵ   ℚ

Produsul ab = supremum-ul mulțimii {xy : x < a, 
y < b}

Sau:

ab = sup{xy : x  (-∞, a) y  (-∞, b)}∈ ∈

Ut valeant hae definitiones, demonstrandum est subsistere propositiones 12 et 13, si a, b ϵ 
 . ℝ

„Substractionem et divisionem ut operationes inversas additiones et multiplicationis definire 
licet, illarumque proprietas demonstrare.

§10. Quantitatum systemata.

Explicationes.

Si a ϵ K  , signa I a, Ea, Lb leguntur: interior, exterior, limes classis a.ℚ

Definitiones.”

43 Doar că, în accepțiuni contemporane am evitat să mai specific – așa precum a facurt domnia sa, că există x,y cu 
proprietatea x+y=z, rexpectiv x×y=z și să definec mulțimea tuturor acelor z. În perspectiva domniiei sale rolul lui z 
era de areprezenta variabila prin care se descrie mulțimea rezultatelor posibile (sumele sau produsele) și era pur for-
mal, servind doar pentru a se construi „mulțimea de valori”.
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Pentru a fi valabile aceste definiții, trebuie demonstrat că propozițiile 12 și 13 se susțin, dacă 
a, b aparțin lui  (actualmente ).ℝ ℚ

Scăderea și împărțirea pot fi definite ca operații inverse ale adunării și înmulțirii, iar proprie-
tățile lor pot fi demonstrate.

§10. Sisteme de cantități.

Explicații.

Dacă a aparține K  (actualmente ) , semnele Ia, Ea, Lb se citesc: interiorul, exteriorul, liℚ ℝ -
mita clasei a.

Definiții.

Notația originală Interpretare contemporană

1. a ϵ K  . Ɔ Ia =  [x ℚ ℚ ϵ]([(u, v) ϵ] :: u, 
v ϵ

  u < x < v  ℚ ∴ ∴ ϶ > u . ϶ < v : Ɔ: a : .:
- =  ).∧

„Interiorul lui a” este mulțimea punctelor x pen-
tru care există un interval (u,v) conținut în a.

int(a)={x∈  ℝ :  u,v  ∃ ∈ ℝ (u<x<v (u,v) a)}.∧ ⊆  

sau:

int(a)={x∈ℝ: ε>0(x−ε,x+ε) a}. ∃ ⊆
2. a ϵ K  . Ɔ . Ea = I(- a)ℚ Exteriorul lui a este interiorul complementarei lui 

a.

ext(a) = int(aᶜ)

3. a ϵ K  . Ɔ . Lb = (- Ia)(- Ea).ℚ Limita  lui  a  este  complementara  reuniunii 
interiorului și exteriorului

∂a = (int(a)  ext(a))ᶜ∪

„Theoremata”

Teoreme.

Notația originală Notația  contemporană  reformulată  în 
limbaj natural

4.  a ϵ K  . x, u, v ℚ ϵ
 . u < x < v .( ℚ ϶ > u . ϶ < v : ca) : Ɔ . x 

ϵ
Ia

Definiția punctelor interioare:

Dacă x este între u și v și intervalul (u, 
v)  a, atunci x  Ia.∈ ∈
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5. a ϵ K  . x ℚ ϵ Ia : Ɔ: [(u, v) ϵ](u, v ϵ
  u < x < v  > u . < v : Ɔ: a) - =ℚ ∴ ∴  

∧

Caracterizarea standard a punctelor in-
terioare:

x  Ia dacă și numai dacă există inter∈ -
val (u, v) cu x  (u, v)  a.∈ ⊆

Dem. P1 = (P4)(P5). Se  combină  cele  două  axiome  fun-
damentale despre intervale și incluziu-
ne.

6. a ϵ K  . u, v ℚ ϵ  .( ℚ ϶ > u . ϶ <  :∧
Ɔa)  Ɔ  ∴ ∴ ϶ > u . ϶ < v : Ɔ Ia.

Intervalele deschise incluse în a sunt în 
interiorul lui a

Dacă (u, v)  a, atunci (u, v)  Ia⊆ ⊆
Dem. P6 = P4. Se bazează direct pe axioma P4 despre 

intervale.

Dacă (u, v)  a, atunci pentru orice x⊆  
 (u, v) intervalul (u, v) însuși serveș∈ -

te drept vecinătate deschisă a lui x in-
clusă în a, deci x  int(a).∈  

Prin urmare (u, v)  int(a).⊆

7. a ϵ K  . Ɔ . Ia Ɔ a.ℚ Interiorul este inclus în mulțimea origi-
nală:

int(a)  a⊆

8. a ϵ K  . Ɔ . IIa = Ia.ℚ Interiorul interiorului este interiorul

int(int(a)) = int(a) – idempotența

Pentru orice mulțime a  K(∈ ℝ) avem 
int(int(a)) = int(a)

Dem. Hp. ( Ia)[a] P7 : Ɔ . IIa Ɔ Ia (1)  Din teorema 7, știm că int(a)  a, prin⊆  
urmare  din  monotonia  interiorului 
(care  urmează  din  P7):  int(int(a))  ⊆ 
int(a)

Pentru incluziunea inversă, considerăm 
x  int(a).∈

Din definiția  interiorului  (Teorema 5) 
există u, v  ∈ ℝ cu u < x < v astfel în-
cât (u, v)  a.⊆

Hp. (2)

x, u, v ϵ  . u < x < v .( ℚ ϶ > u . ϶ < v : Ɔ 
a).
P6 : Ɔ: u, v ϵ  . u < x < v .( > u . < v :ℚ
Ɔ Ia)

Hp. x ϵ Ia .(2) : Ɔ: x ϵ IIa (3)

Hp. (3) : Ɔ: Ia IIa (4)

Hp. (1).(4) : Ɔ: Ts. (Theor.)
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Din teorema 6,  avem (u,  v)   int(a)⊆  
deci x  int((u, v)).∈
Prin  definiția  interiorului  aplicată  lui 
int(a) rezultă că x  int(int(a)).∈

Prin urmare: int(a)  int(int(a))⊆

Din (1) și (6): int(int(a)) = int(a)

9. a, b ϵ K  . a Ɔ b : Ɔ . Ia Ɔ Ibℚ Monotonia operatorului interior

Dacă a  b, atunci Ia  Ib⊆ ⊆

Dacă a,  b   K(∈ ℝ)  și  a   b,  atunci⊆  
int(a)  int(b)⊆

Dem. Hp. x, u,   . u < x <  .( > u . < ∧ ∧ ∧ℚ  
:

(1) Fie x  int(a).∈

Din definiția interiorului, există u, v ∈ 
 ℝ cu u < x < v astfel încât (u, v)  a.⊆

Din ipoteza a  b, rezultă (u, v)  b.⊆ ⊆

Prin definiția interiorului aplicată lui b, 
avem x  int(b).∈

Prin urmare: int(a)  int(b)⊆

Ɔ a) : Ɔ  ∴ ϶ > u . ϶ < v : Ɔ b
Hp. x ϵ Ia : Ɔ: x ϵ Ib

10. a, b ϵ K  : Ɔ: I (ab) Ɔ Iaℚ Interiorul intersecției este inclus în in-
teriorul fiecărei mulțimi

int(a ∩ b)  int(a)⊆
Dem. (ab, a)[a, b] P9 . = . P10 Din ab  a și monotonia interiorului⊆  

(P9): int(ab)  int(a). ⊆
Similar, din ab  b: int(ab)  int(b).⊆ ⊆  
Prin urmare int(ab)  int(a) ∩ int(b).⊆

11. a, b ϵ K  . Ɔ . I (ab) Ɔ( Ia)( Ib)ℚ Interiorul intersecției este inclus în in-
tersecția interioarelor

int(a ∩ b)  int(a) ∩ int(b)⊆
Dem. P11 = : P10 . ∩ .(b, a)[a, b] P10 Din P10: int(a ∩ b)  int(a).⊆  

Aplicând P10 cu (b, a) în loc de (a, b): 
int(a ∩ b)  int(b). ⊆
Prin  urmare  int(a  ∩  b)   int(a)  ∩⊆  
int(b).
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12. a, b ϵ K  . Ɔ . Ia Ɔ I (a  b)ℚ ∪ Interiorul este inclus în interiorul reu-
niunii

int(a)  int(a  b)⊆ ∪

13. a, b ϵ K  . Ɔ . Ia  Ib Ɔ I (a  b)ℚ ∪ ∪ Reuniunea interioarelor este inclusă în 
interiorul reuniunii

int(a)  int(b)  int(a  b)∪ ⊆ ∪

14. a, b ϵ K  . Ɔ . I (ab) = ( Ia)( Ib)ℚ Interiorul intersecției egal cu intersec-
ția interioarelor

int(a ∩ b) = int(a) ∩ int(b)

Pentru a, b  K( ) int(a ∩ b) = int(a)∈ ℚ  
∩ int(b)

Dem. Hp. P11 : Ɔ . I (ab) Ɔ ( Ia)( Ib) (1) Prima incluziune: 
Din teorema 11: int(a ∩ b)  int(a) ∩⊆  
int(b)

A doua incluziune: 
Fie x  int(a) ∩ int(b).∈

Din x  int(a) există u, v   cu u <∈ ∈ ℚ  
x < v și (u, v)  a.⊆

Din x  int(b) există u', v'   cu u'∈ ∈ ℚ  
< x < v' și (u', v')  b.⊆

Se  definește  u''  =  max(u,  u')  și  v''  = 
min(v, v').

Atunci u'' < x < v'' (întrucât u < x < v și 
u' < x < v').

Intervalul (u'', v'')  (u, v) ∩ (u', v') ⊆ ⊆ 
a ∩ b.

Prin definiția interiorului, x  int(a ∩∈  
b).

Prin urmare: int(a) ∩ int(b)  int(a ∩⊆  
b)

Din  (1)  și  (9):  int(a  ∩ b)  =  int(a)  ∩ 
int(b)

Hp. x ϵ  . u, v ℚ ϵ (2)

 . u < x <  .( ℚ ∧ ϶ > u . ϶ < v : Ɔa). u’ , 
v’ ϵ

 . u’ < x < v’ .( ℚ ϶ > u’ . < v’ : Ɔ b). u’’ 
= 
M(u  u’ ). v’’ = W (v, v’ ) : Ɔ: u’’, v’’∪  
ϵ

 . u’’ < x < v’’ .( ℚ ϶ > u’’ . > v’’ : Ɔ: ab)

Hp. x ϵ Ia . x ϵ Ib .(2) : Ɔ . x ϵ I (ab) (3)

Hp. (3) : Ɔ: ( Ia)( Ib) Ɔ I (ab) (4)

Hp. (1).(4) : Ɔ . Ts.

154

https://esteticademersurilorinutile.com/
https://www.google.com/search?cs=1&sca_esv=5cbb6f2e087ee285&sxsrf=AE3TifM2PyKZVIxgbT_i5TxklnxrRpQbVg%3A1755157331069&q=Such+that+(%CF%B6)&sa=X&ved=2ahUKEwiTis_J5omPAxX-h_0HHct3Bu0QxccNegQIIhAB&mstk=AUtExfDqctTKkNoSW7ViS3Pmx_6rhREJS4HbTOIyVz7TLafBKt6GA4zUeiTlT_A9NBecwtQ3Fv7N8HlegTAP0Mc0VJmK8vK3lB4cM7N5uxhiARpCt884N6GnBweMYTOelaPUqYU29sF7DB_YJrCsZy2jWzxLLRhMclve5cz1cWC0nfMNIpvlI_YYlm6Cg8_vezaE_NcqHUBEu-w3hJcB4ltpqHK7mEY9r7S2mk6xeRqivD-U06Iza2U1nag53eWDwQbxQhcLgbvaTlRdiw5ACj1rWesl&csui=3
https://www.google.com/search?cs=1&sca_esv=5cbb6f2e087ee285&sxsrf=AE3TifM2PyKZVIxgbT_i5TxklnxrRpQbVg%3A1755157331069&q=Such+that+(%CF%B6)&sa=X&ved=2ahUKEwiTis_J5omPAxX-h_0HHct3Bu0QxccNegQIIhAB&mstk=AUtExfDqctTKkNoSW7ViS3Pmx_6rhREJS4HbTOIyVz7TLafBKt6GA4zUeiTlT_A9NBecwtQ3Fv7N8HlegTAP0Mc0VJmK8vK3lB4cM7N5uxhiARpCt884N6GnBweMYTOelaPUqYU29sF7DB_YJrCsZy2jWzxLLRhMclve5cz1cWC0nfMNIpvlI_YYlm6Cg8_vezaE_NcqHUBEu-w3hJcB4ltpqHK7mEY9r7S2mk6xeRqivD-U06Iza2U1nag53eWDwQbxQhcLgbvaTlRdiw5ACj1rWesl&csui=3
https://www.google.com/search?cs=1&sca_esv=5cbb6f2e087ee285&sxsrf=AE3TifM2PyKZVIxgbT_i5TxklnxrRpQbVg%3A1755157331069&q=Such+that+(%CF%B6)&sa=X&ved=2ahUKEwiTis_J5omPAxX-h_0HHct3Bu0QxccNegQIIhAB&mstk=AUtExfDqctTKkNoSW7ViS3Pmx_6rhREJS4HbTOIyVz7TLafBKt6GA4zUeiTlT_A9NBecwtQ3Fv7N8HlegTAP0Mc0VJmK8vK3lB4cM7N5uxhiARpCt884N6GnBweMYTOelaPUqYU29sF7DB_YJrCsZy2jWzxLLRhMclve5cz1cWC0nfMNIpvlI_YYlm6Cg8_vezaE_NcqHUBEu-w3hJcB4ltpqHK7mEY9r7S2mk6xeRqivD-U06Iza2U1nag53eWDwQbxQhcLgbvaTlRdiw5ACj1rWesl&csui=3
https://www.google.com/search?cs=1&sca_esv=5cbb6f2e087ee285&sxsrf=AE3TifM2PyKZVIxgbT_i5TxklnxrRpQbVg%3A1755157331069&q=Such+that+(%CF%B6)&sa=X&ved=2ahUKEwiTis_J5omPAxX-h_0HHct3Bu0QxccNegQIIhAB&mstk=AUtExfDqctTKkNoSW7ViS3Pmx_6rhREJS4HbTOIyVz7TLafBKt6GA4zUeiTlT_A9NBecwtQ3Fv7N8HlegTAP0Mc0VJmK8vK3lB4cM7N5uxhiARpCt884N6GnBweMYTOelaPUqYU29sF7DB_YJrCsZy2jWzxLLRhMclve5cz1cWC0nfMNIpvlI_YYlm6Cg8_vezaE_NcqHUBEu-w3hJcB4ltpqHK7mEY9r7S2mk6xeRqivD-U06Iza2U1nag53eWDwQbxQhcLgbvaTlRdiw5ACj1rWesl&csui=3
https://esteticademersurilorinutile.com/


                                    esteticademersurilorinutile.gmail.com
                                    esteticademersurilorinutile.com   

15. a ϵ K  . Ɔ . Ea Ɔ −aℚ Exteriorul este inclus în complementa-
ra mulțimii

ext(a)  aᶜ⊆
Dem. P15 = (- a)[a] P7 Se aplică Teorema 7 la complementara 

lui a.

Din teorema 7 se știe că int(a)  a.⊆  
Aplicându-se  această  proprietate  la  aᶜ 
(complementara lui a): int(aᶜ)  aᶜ.⊆  
Prin  definiție,  ext(a)  =  int(aᶜ)  deci 
ext(a)  aᶜ.⊆

16. a ϵ K  . Ɔ  Ia . Ea := ℚ ∴ ∧ Interiorul și exteriorul sunt disjuncte

int(a) ∩ ext(a) = ∅
Dem. Hp. P7 . P15 : Ɔ  Ia . Ea : Ɔ: a - a :=∴  

∧
Se folosesc proprietățile de incluziune 
pentru a arăta că intersecția este vidă.

Din P7: int(a)  a. Din P15: ext(a) ⊆ ⊆ 
-a. 

Prin urmare int(a) ∩ ext(a)  a ∩ (aᶜ)⊆  
= .∅

17. a ϵ K  . Ɔ . I Ea = Eaℚ Interiorul exteriorului este exteriorul

int(ext(a)) = ext(a)

Dem. P17 = (- a)[a] P8 Se  aplică  idempotența  interiorului  la 
complementara lui a.

ext(a) = int(aᶜ) 

Aplicând Teorema 8 la -a: int(int(aᶜ)) = 
int(aᶜ). 

int(ext(a)) = ext(a).

18. a, b ϵ K  . b Ɔ a : Ɔ . Ea Ɔ Ebℚ Antimonotonia exteriorului:

Dacă b  a, atunci Ea  Eb⊆ ⊆
Dem. P18 = (- a, - b)[a, b] P9 Se  aplică  monotonia  interiorului  la 

complementare.

Dacă b  a, atunci aᶜ  bᶜ. Din mono⊆ ⊆ -
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tonia  interiorului  (P9):  int(aᶜ)  ⊆ 
int(bᶜ). 

ext(a)  ext(b).⊆

19. a, b ϵ K  . Ɔ: Ea  Eb . Ɔ E (ab)ℚ ∪ Reuniunea exterioarele este inclusă în 
exteriorul intersecției:

ext(a)  ext(b)  ext(a ∩ b)∪ ⊆

20. a, b ϵ K  . Ɔ . E (a  b) = ( Ea)( Eb)ℚ ∪ Exteriorul reuniunii egal cu intersecția 
exterioarele:

ext(a  b) = ext(a) ∩ ext(b)∪
Dem. P20 = (- a, - b)[a, b] P14 Se aplică formula interiorului intersec-

ției la complementare.

ext(a  b) = int((a  b)∪ ∪ c) = int(aᶜ ∩ -
bᶜ). 

Din P14: int( aᶜ ∩ bᶜ) = int(aᶜ) ∩ int(bᶜ) 
= ext(a) ∩ ext(b).

21. a ϵ K  . Ɔ . L (- a) = Lbℚ Limita complementarei este limita ori-
ginalului

∂(aᶜ) = ∂a

22. a ϵ K  . Ɔ  Ia . Lb := ℚ ∴ ∧
Ɔ  Ea . Lb := ∴ ∧
Ɔ  - Ia . - Ea . - Lb := ∴ ∧

Interior, exterior și limita sunt mutual 
disjuncte

int(a) ext(a) ∂a sunt disjuncte

Dem. P22 = P3 Se bazează  pe  axioma descompunerii 
spațiului.

Prin  definiție,  ∂a  =   \  (int(a)  ℚ ∪ 
ext(a)). 

Prin urmare, int(a) ext(a) și ∂a sunt dis-
juncte două câte două și reuniunea lor 
este .ℚ

23. a ϵ K  . Ɔ: a Ɔ . Ia  Lbℚ ∪ Mulțimea este inclusă în reuniunea in-
teriorului și limitei:

a  int(a)  ∂a⊆ ∪
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24. a ϵ K  . Ɔ . I (a Lb) = ℚ ∧ Interiorul intersecției cu limita este vid:

int(a ∩ ∂a) = ∅
Dem. Hp. P14 . P7 . P22 : Ɔ: I (a Lb). = 

. Ia I Lb . Ɔ . Ia Lb . = . ∧
din p14: int(a ∩ ∂a) = int(a) ∩ int(∂a). 
din p7: int(∂a)  ∂a. din p22: int(a) ∩⊆  
∂a = . ∅
prin urmare int(a) ∩ int(∂a) = , deci∅  
int(a ∩ ∂a) = .∅

25. a, b ϵ K  . a Ɔb : Ɔ: Lb . Ɔ . Ib  Lbℚ ∪ Proprietate de monotonie pentru limită:

Dacă a  b, atunci La  Ib  Lb⊆ ⊆ ∪

Dacă a, b  K( ) și a  b, atunci ∂a∈ ⊆ℚ  
 int(b)  ∂b⊆ ∪

Dem. Hp. P18 : Ɔ: Eb Ɔ Ea : Ɔ:
Ia  Lb . Ɔ . Ib  Lb : Ɔ . Ts.∪ ∪

Din antimonotonia exteriorului (Teore-
ma 18): dacă a  b, atunci ext(b) ⊆ ⊆ 
ext(a).

Știm că  = int(a)  ∂a  ext(a) =ℚ ∪ ∪  
int(b)  ∂b  ext(b) (descompunerea∪ ∪  
spațiului).

Din a  b și  monotonia interiorului:⊆  
int(a)  int(b).⊆

Din (1): ext(b)  ext(a) deci int(a) ⊆ ∪ 
∂a  int(b)  ∂b.⊆ ∪

Combinând cu (3) rezultă ∂a  int(b)⊆  
 ∂b∪

26. a, b ϵ K  . Ɔ:ℚ
L (ab) Ɔ . Ia Lb  Ib Lb  Lb Lb∪ ∪

Limita intersecției:

∂(A ∩ B)  (int(A) ∩ ∂B)  (int(B)⊆ ∪  
∩ ∂A)  (∂A ∩ ∂B)∪

Pentru a, b  K( ) avem ∂(a ∩ b) ∈ ⊆ℚ  
(int(a) ∩ ∂b)  (int(b) ∩ ∂a)  (∂a ∩∪ ∪  
∂b)

Dem. Hp. Ɔ: ab Ɔ a . ab Ɔ b . P25 Din a ∩ b  a și a ∩ b  b, aplicând⊆ ⊆  
Teorema 25:

∂(a ∩ b)  int(a)  ∂a ⊆ ∪
∂(a ∩ b)  int(b)  ∂b ⊆ ∪

: Ɔ: L (ab) Ɔ Ia  Lb . L (ab) Ɔ Ib ∪ ∪ 
Lb :
Ɔ: L (ab) Ɔ ( Ia  Lb) ( Ib ∪ ∪
Lb). L(ab) ( Ia) ( Ib) = L (ab) I (ab) = 
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 :∧
Prin urmare: ∂(a ∩ b)  (int(a)  ∂a)⊆ ∪  
∩ (int(b)  ∂b)∪

Dezvoltând  intersecția:  ∂(a  ∩  b)  ⊆ 
(int(a) ∩ int(b))  (int(a) ∩ ∂b)  (∂a∪ ∪  
∩ int(b))  (∂a ∩ ∂b)∪

Din teorema 24, int(a ∩ b) ∩ ∂(a ∩ b) 
= , iar Din teorema 14, int(a ∩ b) =∅  
int(a) ∩ int(b).

Prin urmare, primul termen se anulează 
cu o parte din ∂(a ∩ b).

Rezultă: ∂(a ∩ b)  (int(a) ∩ ∂b) ⊆ ∪ 
(int(b) ∩ ∂a)  (∂a ∩ ∂b)∪

Ɔ: Ts.

26’. a, b ϵ K  . Ɔ . L (ab) Ɔ Lb  Lbℚ ∪ Limita intersecției inclusă în reuniunea 
limitelor

∂(A ∩ B)  ∂A  ∂B⊆ ∪

27. a, b ϵ K  . Ɔ: L (a  b) = ℚ ∪
Lb Eb  Lb Ea  Lb Lb∪ ∪

Limita reuniunii:

∂(A  B) = (∂A ∩ ext(B))  (∂B ∩∪ ∪  
ext(A))  (∂A ∩ ∂B)∪

Dem. P27 = (- a, - b)[a, b] P26

27’. a, b ϵ K  . Ɔ: L (a  b) Ɔ Lb  Lbℚ ∪ ∪ Limita  reuniunii  inclusă  în  reuniunea 
limitelor

∂(A  B)  ∂A  ∂B∪ ⊆ ∪

28. a ϵ K  . Ɔ . L Ia Ɔ Lbℚ Limita interiorului inclusă în limită:

∂(int(a))  ∂a⊆
Dem. Hp. P7 : Ɔ: Ia Ɔa . P25 (1)  Din P7: int(a)  a ⊆

Din P25 (monotonia limitei): ∂(int(a)) 
 int(a)  ∂a ⊆ ∪

Din  P8  (idempotența):  int(a)  = 
int(int(a)) 
Din  P22  (disjuncția  regiunilor): 
∂(int(a))  ∩  int(a)  =  ∂(int(a))  ∩ 
int(int(a)) =  ∅
Din (2) și (4): ∂(int(a))  ∂a⊆  

: Ɔ: L Ia Ɔ Ia  Lb∪
Hp. P8 . P22 (2)

: Ɔ . L Ia Ia = L Ia IIa = ∧
(1)(2). Ɔ . Theor.
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28’. a ϵ K  . Ɔ L Ea Ɔ Lbℚ Limita exteriorului inclusă în limită:

∂(ext(a))  ∂a⊆

29. a ϵ K  . Ɔ . LLb Ɔ L Ia  L Eaℚ ∪ Limita limitei inclusă în reuniunea li-
mitelor interiorului și exteriorului:

∂(∂a)  ∂(int(a))  ∂(ext(a))⊆ ∪
Dem. Hp. Ɔ: LLb = L ( Ia  Ea). P27’ : Ɔ .∪  

Ts.
∂a =  \ (int(a)  ext(a)) deci ∂(∂a) =ℚ ∪  
∂(  \ (int(a)  ext(a))) ℚ ∪
Prin  proprietăți  generale:  ∂(∂a)  ⊆ 
∂(int(a))  ∂(ext(a)) ∪

29’. a ϵ K  . Ɔ . LLb Ɔ Lbℚ limita limitei inclusă în limită:

∂(∂a)  ∂a⊆
Dem. P29 . P28 . P28’ : Ɔ . Theor. Din  T29:  ∂(∂a)   ∂(int(a))  ⊆ ∪ 

∂(ext(a)). 
Din T28: ∂(int(a))  ∂a. ⊆
Din T28' (pentru exterior): ∂(ext(a)) ⊆ 
∂a. 
Prin urmare ∂(∂a)  ∂a.⊆

30. a ϵ K  . Ɔ . Lb = I Lb  LLbℚ ∪  Limita este reuniunea interiorului limi-
tei și limita limitei:

∂a = int(∂a)  ∂(∂a)∪

pentru a  k( ) avem ∂a = int(∂a) ∈ ∪ℚ  
∂(∂a)

Dem. Hp. P23 : Ɔ . Lb Ɔ I Lb  LLb∪ (1) Prima incluziune: Din teorema 23 (des-
compunerea spațiului) ∂a  int(∂a) ⊆ ∪ 
∂(∂a).

A  doua  incluziune:  Din  teorema  7, 
int(∂a)  ∂a.⊆

Din teorema 29', ∂(∂a)  ∂a.⊆

Prin urmare: int(∂a)  ∂(∂a)  ∂a∪ ⊆

Din (1) și (4): ∂a = int(∂a)  ∂(∂a)∪

Hp. P7 : Ɔ . I Lb Ɔ Lb (2)

Hp. P29’ : Ɔ . LLb Ɔ Lb (3)

(1)(2)(3). Ɔ . Theor.

31 a ϵ K  . Ɔ . L I Lb Ɔ LLbℚ Limita interiorului limitei inclusă în li-
mita limitei:
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∂(int(∂a))  ∂(∂a)⊆
Dem. P31 = (Lb)[a] P28 Din  T28  aplicat  la  ∂a:  ∂(int(∂a))  ⊆ 

∂(∂a). Aceasta este exact teorema 31.

32. a ϵ K  . Ɔ . I LLb = ℚ ∧ Interiorul limitei limitei este vid:

int(∂(∂a)) = ∅
Dem. Hp. P29’ : Ɔ: LLb = Lb LLb .(Lb)[a Din P29', ∂(∂a)  ∂a, combinat cu P24⊆  

aplicat la ∂a în loc de a. 

P24 : ƆTs.

33. a ϵ K  . Ɔ: I L I Lb = ℚ ∧ Interiorul  limitei  interiorului  limitei 
este vid:

int(∂(int(∂a))) = ∅
Dem. P31 . P32 : Ɔ . P33 Rezultă din T31 și T32 prin proprieta-

tea vidului. 

34. a ϵ K  . Ɔ . LL Lb = LLbℚ Limita limitei limitei este limita limi-
tei:

∂(∂(∂a)) = ∂(∂a)

Dem. (Lb)[a] P30 /P P32 : Ɔ . Theor. Din  T30  aplicat  la  ∂a,  combinat  cu 
T32. 

35. a, b ϵ K  . Ɔ . Ia Lb Ɔ L (ab)ℚ Intersecția interiorului cu limita inclusă 
în limita intersecției:

int(a) ∩ ∂b  ∂(a ∩ b)⊆
Dem. Hp. P14 (1) Din teorema 14: int(a ∩ b) = int(a) ∩ 

int(b). 
Prin urmare: int(a) ∩ ∂b ∩ int(a ∩ b) = 
int(a) ∩ ∂b ∩ int(a) ∩ int(b) = int(a) ∩ 
int(b) ∩ ∂b
Din proprietățile limitei: int(b) ∩ ∂b = 

, deci expresia de mai sus este vidă.∅  
Rezultă prin urmare că int(a) ∩ ∂b ⊆ 
∂(a ∩ b).

: Ɔ . Ia Lb I (ab) = Ia Ib Lb = ∧
Hp. P2 . P14 (2)

: Ɔ . Ia Lb E (ab) = Ia Lb I (- a  - b)∪  
= 
I (a - b) Lb = Ia Eb Lb = ∧
(1)(2) ƆTheor.

36. a, b ϵ K  . Ɔ . Ia Lb  Ib Lb Ɔ Lbb.ℚ ∪ (Vide 
P26)

Reuniunea  intersecțiilor  incluse  în  li-
mita intersecției:

(int(a) ∩ ∂b)  (int(b) ∩ ∂a)  ∂(a ∩∪ ⊆  
b)
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Dem. P36 = : P35 .(b, a)[a, b] P35 Se aplică Teorema 35 de două ori - o 
dată cu (a, b) și o dată cu (b, a):
Din P35: int(a) ∩ ∂b  ∂(a ∩ b)⊆  
Aplicând  P35  cu  rolurile  inversate: 
int(b) ∩ ∂a  ∂(a ∩ b) ⊆
Prin reuniunea acestor două incluziuni: 
(int(a) ∩ ∂b)  (int(b) ∩ ∂a)  ∂(a ∩∪ ⊆  
b)

37. a, b  ϵ K  . Ɔ . Ea Lb  Eb Lb  Lℚ ∪ ∪  
(a b)∪

(Vide 
P27)

Tot așa și pentru reuniune:

(ext(a) ∩ ∂b)  (ext(b) ∩ ∂a)  ∂(a∪ ⊆  
 b)∪

Dem. P37 = (- a, - b)[a, b] P36 Se aplică Teorema 36 la complementa-
rele -a și -b:
(int(-a) ∩ ∂(-b))  (int(-b) ∩ ∂(-a)) ∪ ⊆ 
∂((-a) ∩ (-b))

Folosind definițiile:
int(-a) = ext(a) ∂(-b) = ∂b și (-a) ∩ (-b) 
= -(a  b): (ext(a) ∩ ∂b)  (ext(b) ∩∪ ∪  
∂a)  ∂(-(a  b)) = ∂(a  b)⊆ ∪ ∪

38. a, b ϵ K  . Ɔ . I (a  b) Ɔ Ia  Ib ℚ ∪ ∪ ∪ 
Lb Lb

(Vide 
P13)

Interiorul reuniunii:

int(a  b)  int(a)  int(b)  (∂a ∩∪ ⊆ ∪ ∪  
∂b)

Pentru a, b  K( ) avem int(a  b)∈ ∪ℚ  
 int(a)  int(b)  (∂a ∩ ∂b)⊆ ∪ ∪

Dem. Hp. (1) Știm că  = (int(a)   ∂a   ext(a))ℚ ∪ ∪  
pentru orice mulțime a.

Prin urmare: int(a  b)  (int(a) ∪ ⊆ ∪ 
∂a  ext(a)) ∩ (int(b)  ∂b  ext(b))∪ ∪ ∪

Din teorema 20: ext(a  b) = ext(a) ∩∪  
ext(b)

Din teorema 16: int(a  b) ∩ ext(a ∪ ∪ 
b)  = ,  deci  int(a   b)  ∩ ext(a)  ∩∅ ∪  
ext(b) = ∅

Din teorema 37 și proprietățile limitei 
reuniunii: int(a  b) ∩ (ext(a) ∩ ∂b ∪ ∪ 
ext(b) ∩ ∂a) = ∅

Ɔ .  I  (a b) Ɔ( Ia  Lb  Ea)(  Ib∪ ∪ ∪ ∪ 
Lb  Eb)∪
Hp. P20 . P16 (2)

: Ɔ . I (a b) Ea Eb = I (a b) E (a b)∪ ∪ ∪  
= ∧
Hp. P37: Ɔ: I (a  b) ( Ea Lb ∪ ∪ (3)

Eb Lb). Ɔ . I (a  b) L(a  b). = ∪ ∪ ∧
(1)(2)(3). Ɔ . Theor.
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Eliminând  termenii  care  se  anulează 
din  dezvoltarea  produsului,  rămâne: 
int(a  b)  int(a)  int(b)  (∂a ∩∪ ⊆ ∪ ∪  
∂b) 

38’. a, b ϵ K  . Ɔ . E (ab) Ɔ Ea  Eb ℚ ∪ ∪ 
Lb Lb

(Vide 
P19)

Exteriorul intersecției:

ext(A ∩ B)  ext(A)  ext(B)  (∂A⊆ ∪ ∪  
∩ ∂B)

39. a ϵ K  . Ɔ . I Lb L Ia = ℚ ∧ Intersecția interiorului limitei cu limita 
interiorului este vidă:

int(∂a) ∩ ∂(int(a)) = ∅
Dem. Hp. P36 : Ɔ: I Lb L Ia ƆL (Lb Ia) = ∧ Din teorema 36 aplicată la ∂a și int(a): 

int(∂a) ∩ ∂(int(a))  ∂(∂a ∩ int(a))⊆
Din teorema 24: ∂a ∩ int(a) = , prin∅  
urmare ∂(∂a ∩ int(a)) = ∂( ) = .∅ ∅  
Rezultă: int(∂a) ∩ ∂(int(a)) = ∅

40. a ϵ K  . Ɔ . L Ia Ɔ LLbℚ Limita interiorului inclusă în limita li-
mitei:

∂(int(A))  ∂(∂A)⊆
Dem. Hp. P28 . P30 . P39 : ƆTheor. Din teorema 28: ∂(int(a))  ∂a⊆  

Din teorema 30: ∂a = int(∂a)  ∂(∂a)∪  
Din teorema 39: int(∂a) ∩ ∂(int(a)) = 
∅
Prin urmare: ∂(int(a))  ∂a și ∂(int(a))⊆  

 int(∂a) ⊥
Rezultă: ∂(int(a))  ∂(∂a)⊆

40’. a ϵ K  . Ɔ . L Ea Ɔ LLbℚ Limita exteriorului inclusă în limita li-
mitei:

∂(ext(a))  ∂(∂a)⊆

41. a ϵ K  . Ɔ LLb = L Ia  L Eaℚ ∪ Limita limitei este reuniunea limitelor 
interiorului și exteriorului:

∂(∂a) = ∂(int(a))  ∂(ext(a))∪
Dem. P29 . P40 . P40’ : Ɔ . Theor. Din teorema 29: ∂(∂a)  ∂(int(a)) ⊆ ∪ 

∂(ext(a)) 
Din teorema 40: ∂(int(a))  ∂(∂a)⊆
Din  analog  pentru  exterior  (P40'): 
∂(ext(a))  ∂(∂a)⊆
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Rezultă egalitatea: ∂(∂a) = ∂(int(a)) ∪ 
∂(ext(a))

42. a ϵ K  . Ɔ . I L Ia = ℚ ∧
Ɔ . I L Ea = ∧
Ɔ . LL Ia = L Ia
Ɔ . LL Ea = L Ea

Mai multe proprietăți ale limitelor ite-
rate.

Proprietăți  complexe  ale  operatorilor 
compuși.

43. a, b ϵ K  . Ɔ . I ( Ia  Ib) = Ia  Ibℚ ∪ ∪ Interiorul reuniunii interioarelor:

int(int(a)  int(b)) = int(a)  int(b)∪ ∪

Pentru a, b  K( ) avem int(int(a) ∈ ∪ℚ  
int(b)) = int(a)  int(b)∪

Dem. Hp. P7 : Ɔ . I ( Ia  Ib) Ɔ Ia  Ib∪ ∪ (1) Prima  incluziune:  Din  teorema  7, 
int(int(a)  int(b))  int(a)  int(b)∪ ⊆ ∪

A doua incluziune:

Din  teorema  8:  int(a)  =  int(int(a))  și 
int(b) = int(int(b)) 

Din teorema 13 (interiorul  reuniunii): 
int(a)   int(b)  =  int(int(a))  ∪ ∪ 
int(int(b))  int(int(a)  int(b))⊆ ∪  

Din  (1)  și  (2):  int(int(a)   int(b))  =∪  
int(a)  int(b) ∪

Hp. P8 . P13 (2)

: Ɔ: Ia  Ib . = . IIa  IIb . Ɔ . I ( Ia∪ ∪ ∪ 
Ib)

(1)(2) ƆTheor.

44. a, b ϵ K  . Ɔ . I (LLb  LLb) = ℚ ∪ ∧ Interiorul  reuniunii  limitelor  limitelor 
este vid:

int(∂(∂a)  ∂(∂b)) = ∪ ∅
Dem. Hp. P38 . P32 . P34 (1) Din teorema 38: int(∂(∂a)  ∂(∂b)) ∪ ⊆ 

int(∂(∂a))  int(∂(∂b))  (∂(∂(∂a)) ∩∪ ∪  
∂(∂(∂b))) 
Din  teorema  32:  int(∂(∂a))  =   Din∅  
teorema 34: ∂(∂(∂a)) = ∂(∂a)
Prin urmare: int(∂(∂a)  ∂(∂b))  ∪ ⊆ ∅ 

   (∂(∂a) ∩ ∂(∂b))  ∂(∂a)∪ ∅ ∪ ⊆  
Prin simetrie și Teorema 8: int(∂(∂a) ∪ 
∂(∂b)) = ∅

: Ɔ . I (LLb  LLb) ƆLLb LLb ƆLLb∪
Hp. (1). P8

: Ɔ . I (LLb  LLb)  I LLb = ∪ ∪ ∧

45. a ϵ K  . Ɔ . I ( Ia  Ea) = Ia  Eaℚ ∪ ∪ Interiorul reuniunii interiorului și exte-
riorului:
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int(int(a)  ext(a)) = int(a)  ext(a)∪ ∪
Dem. P8 . P17 .(- a)[b] P43 : Ɔ . Theor. Din teorema 8: int(a) = int(int(a)) 

Din teorema 17: ext(a) = int(ext(a))
Din  teorema  43  aplicată  la  int(a)  și 
ext(a): int(int(a)  ext(a)) = int(a) ∪ ∪ 
ext(a)

Prin proprietatea că int(a) și ext(a) sunt 
deja „interioare” în sensul că sunt egale 
cu propriile lor interioare.

45’. a ϵ K  . Ɔ . E Lb = Ia  Eaℚ ∪ Exteriorul limitei:

ext(∂a) = int(a)  ext(a)∪

46. a ϵ K  . Ɔ . E Ia = -( Ia  L Ia)ℚ ∪ Exteriorul interiorului:

ext(int(a)) = (int(a)  ∂(int(a)))ᶜ∪

46’. a ϵ K  . Ɔ . EEa = -( Ea  L Ea)ℚ ∪ Exteriorul exteriorului:

ext(ext(a)) = (ext(a)  ∂(ext(a)))ᶜ∪

Și atât. 

Concluziile le puteți trage domniile voastre, așa precum probabil și-ar fi dorit și domnul 
Peano, care în exact această „abruptă” manieră și-a finalizat propria lucrare.

Șchiop Nicolae Cristian
Bacău 24 09 2025
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